Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sci Rep ; 14(1): 11991, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796487

RESUMEN

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Asunto(s)
Alginatos , Reactores Biológicos , Condrogénesis , Hidrogeles , Células Madre Mesenquimatosas , Microesferas , Ingeniería de Tejidos , Alginatos/química , Ingeniería de Tejidos/métodos , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Cartílago/metabolismo , Cartílago/citología , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Factor de Crecimiento Transformador beta1/metabolismo , Diferenciación Celular , Células Cultivadas , Factor de Crecimiento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
2.
Adv Healthc Mater ; : e2304349, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593272

RESUMEN

Median sternotomy surgery stands as one of the prevailing strategies in cardiac surgery. In this study, the cutting-edge bone adhesive is designed, inspired by the impressive adhesive properties found in mussels and sandcastle worms. This work has created an osteogenic nanocomposite coacervate adhesive by integrating a cellulose-polyphosphodopamide interpenetrating network, quaternized chitosan, and zinc, gallium-doped hydroxyapatite nanoparticles. This adhesive is characterized by robust catechol-metal coordination which effectively adheres to both hard and soft tissues with a maximum adhesive strength of 900 ± 38 kPa on the sheep sternum bone, surpassing that of commercial bone adhesives. The release of zinc and gallium cations from nanocomposite adhesives and quaternized chitosan matrix imparts remarkable antibacterial properties and promotes rapid blood coagulation, in vitro and ex vivo. It is also proved that this nanocomposite adhesive exhibits significant in vitro bioactivity, stable degradability, biocompatibility, and osteogenic ability. Furthermore, the capacity of nanocomposite coacervate to adhere to bone tissue and support osteogenesis contributes to the successful healing of a sternum bone defect in a rabbit model in vivo. In summary, these nanocomposite coacervate adhesives with promising characteristics are expected to provide solutions to clinical issues faced during median sternotomy surgery.

3.
Cell Commun Signal ; 22(1): 29, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200606

RESUMEN

The therapeutic effects of extracellular vesicles (EVs) have been identified as a significant factor in intercellular communication in different disease treatments, including osteoarthritis (OA). Compared to the conventional approaches in treating OA, EV therapy is a non-invasive and cell-free method. However, improving the yield of EVs and their therapeutic effects are the main challenges for clinical applications. In this regard, researchers are using the EV engineering potential to overcome these challenges. New findings suggest that the co-culture strategy as an indirect EV engineering method efficiently increases EV production and quality. The co-culture of mesenchymal stem cells (MSCs) and chondrocytes has improved their chondrogenesis, anti-inflammatory effects, and regenerative properties which are mediated by EVs. Hence, co-culture engineering by considerable systems could be useful in producing engineered EVs for different therapeutic applications. Here, we review various co-culture approaches, including diverse direct and indirect, 2D and 3D cell cultures, as well as static and dynamic systems. Meanwhile, we suggest and discuss the advantages of combined strategies to achieve engineered EVs for OA treatment.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Humanos , Técnicas de Cocultivo , Comunicación Celular , Condrocitos , Osteoartritis/terapia
4.
Cell Tissue Res ; 394(1): 145-162, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526734

RESUMEN

Extracellular vesicles (EVs) may have a key therapeutic role and offer an innovative treatment for osteoarthritis (OA). Studies have shown that ratio of MSC/chondrocyte could affect their therapeutic outcomes. Here, we investigate the chondrogenic potential and therapeutic effect of EVs derived from MSCs and chondrocytes in the naïve, chondrogenically primed, and co-culture states to treat OA. EVs are isolated from naïve MSCs (M-EV), chondrogenically primed MSCs (cpM-EV), chondrocytes (C-EV), and co-cultures of chondrocytes plus MSCs at ratios of 1:1 (C/M-EV), 2:1 (2C/M-EV), and 4:1 (4C/M-EV). We characterized the isolated EVs in terms of surface markers, morphology, size, and zeta potential, and evaluated their chondrogenic potential in vitro by qRT-PCR and histological analyses. Next, these EVs were intra-articularly injected into osteoarthritic cartilage of a rat model and assessed by radiography, gait parameters, and histological and immunohistochemical analyses. EVs obtained from chondrocytes co-cultured with MSCs resulted in improved matrix production and functional differentiation. Our research showed that close proximity between the two cell types was essential for this response, and improved chondrogenesis and matrix formation were the outcomes of this interaction in vitro. Furthermore, in the in vivo rat OA model induced by a monoiodoacetate (MIA), we observed recovery from OA by increasing ratio of the C/M-derived EV group compared to the other groups. Our findings show that the increasing chondrocyte ratio to MSC leads to high chondrogenic induction and the therapeutic effect of harvested EVs for cartilage repair.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Ratas , Animales , Condrocitos/metabolismo , Técnicas de Cocultivo , Osteoartritis/metabolismo , Vesículas Extracelulares/metabolismo , Condrogénesis
5.
Biotechnol Lett ; 45(9): 1223-1243, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439932

RESUMEN

PURPOSE: Bone tissue engineering aims to create a three-dimensional, matured, angiogenic scaffold with a suitable thickness that resembles a natural bone matrix. On the other hand, electrospun fibers, which researchers have considered due to their good biomimetic properties, are considered 2D structures. Due to the highly interwoven network and small pore size, achieving the desired thickness for bone lesions has always been challenging. In bone tissue engineering, bioreactors are crucial for achieving initial tissue maturity and introducing certain signals as flow parameters for differentiation. METHODS: In the present study, Human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were co-cultured in a perfusion bioreactor on treated (improved pore size by gelatin sacrification and subsequent ultrasonication) 5-layer polycaprolactone-nano hydroxyapatite-nano zinc oxide (T-PHZ) scaffolds to investigate osteogenesis and angiogenesis simultaneously. The flow parameters and stresses on the cells were studied using two patterns of parallel and vertical scaffolds relative to the flow of the culture medium. In dynamic vertical flow (DVF), the culture medium flows perpendicular to the scaffolds, and in dynamic parallel flow (DPF), the culture medium flows parallel to the scaffolds. In all evaluations, static samples (S) served as the control group. RESULTS: Live/dead, and MTT assays demonstrated the biocompatibility of the 5-layer scaffolds and the suitability of the bioreactor's functional conditions. ALP activity, EDAX analysis, and calcium content measurements exhibited greater osteogenesis for T-PHZ scaffolds in DVF conditions. Calcium content increased by a factor of 2.2, 1.8, and 1.6 during days 7 to 14 of culture under DVF, DPF and S conditions, respectively. After 21 days of co-culturing, an immunohistochemistry (IHC) test was performed to investigate angiogenesis and osteogenesis. Five antibodies were investigated in DVF, CD31, VEGFA, and VEGFR2 for angiogenesis, osteocalcin, and RUNX2 for osteogenesis. Compressive stress applied in DVF mode has increased osteogenic activity compared to DPF. CONCLUSION: The results indicated the development of ideal systems for osteogenesis and angiogenesis on the treated multilayer electrospun scaffolds in the perfusion bioreactor.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Andamios del Tejido/química , Calcio , Células Cultivadas , Ingeniería de Tejidos/métodos , Células Endoteliales de la Vena Umbilical Humana , Diferenciación Celular , Reactores Biológicos , Perfusión
6.
Int J Biol Macromol ; 242(Pt 1): 124602, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141963

RESUMEN

In this study, the effect of alumina nanowire on the physical and biological properties of polyhydroxybutyrate-keratin (PHB-K) electrospun scaffold was investigated. First, PHB-K/alumina nanowire nanocomposite scaffolds were made with an optimal concentration of 3 wt% alumina nanowire by using the electrospinning method. The samples were examined in terms of morphology, porosity, tensile strength, contact angle, biodegradability, bioactivity, cell viability, ALP activity, mineralization ability, and gene expression. The nanocomposite scaffold provided a porosity of >80 % and a tensile strength of about 6.72 MPa, which were noticeable for an electrospun scaffold. AFM images showed an increase in surface roughness with the presence of alumina nanowires. This led to an improvement in the degradation rate and bioactivity of PHB-K/alumina nanowire scaffolds. The viability of mesenchymal cells, alkaline phosphatase secretion, and mineralization significantly increased with the presence of alumina nanowire compared to PHB and PHB-K scaffolds. In addition, the expression level of collagen I, osteocalcin, and RUNX2 genes in nanocomposite scaffolds increased significantly compared to other groups. In general, this nanocomposite scaffold could be a novel and interesting construct for osteogenic induction in bone tissue engineering.


Asunto(s)
Nanocompuestos , Andamios del Tejido , Osteogénesis , Ingeniería de Tejidos/métodos , Regeneración Ósea , Óxido de Aluminio/farmacología , Queratinas/farmacología , Poliésteres/farmacología , Diferenciación Celular
7.
Cell Tissue Bank ; 24(4): 711-724, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36939962

RESUMEN

As a Natural decellularized extracellular matrix, osteochondral tissue is the best scaffold for the restoration of osteoarthritis defects. Bioscaffolds have the most similarly innate properties like biomechanical properties and the preserved connection of the bone-to-cartilage border. Although, their compacity and low porosity particularly, are proven to be difficulties of decellularization and cell penetration. This study aims to develop a new bioscaffold of decellularized osteochondral tissue (DOT) that is recellularized by bone marrow-derived mesenchymal stem cells (BM-MSCs), as a biphasic allograft, which preserved the interface between the cartilage section and subchondral bone of the joint. Whole osteochondral tissues of rabbit knee joints were sheeted in cartilaginous parts in 200-250 µm sections while connected to the subchondral bone and then fully decellularized. The BM-MSCs were seeded on the scaffolds in vitro; some constructs were subcutaneously implanted into the back of the rabbit. The cell penetration, differentiation to bone and cartilage, viability, and cell proliferation in vitro and in vivo were evaluated by qPCR, histological staining, MTT assay, and immunohistochemistry. DNA content analysis and SEM assessments confirmed the decellularization of the bioscaffold. Then, histological and SEM evaluations indicated that the cells could successfully penetrate the bone and cartilage lacunas in implanted grafts. MTT assay confirmed cell proliferation. Prominently, gene expression analysis showed that seeded cells differentiated into osteoblasts and chondrocytes in both bone and cartilage sections. More importantly, seeded cells on the bioscaffold started ECM secretion. Our results indicate that cartilage-to-bone border integrity was largely preserved. Additionally, ECM-sheeted DOT could be employed as a useful scaffold for promoting the regeneration of osteochondral defects.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Conejos , Ingeniería de Tejidos/métodos , Condrocitos , Diferenciación Celular , Andamios del Tejido
8.
Adv Exp Med Biol ; 1409: 127-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35816248

RESUMEN

Stem cells are valuable tools in regenerative medicine because they can generate a wide variety of cell types and tissues that can be used to treat or replace damaged tissues and organs. However, challenges related to the application of stem cells in the scope of regenerative medicine have urged scientists to utilize nanomedicine as a prerequisite to circumvent some of these hurdles. Nanomedicine plays a crucial role in this process and manipulates surface biology, the fate of stem cells, and biomaterials. Many attempts have been made to modify cellular behavior and improve their regenerative ability using nano-based strategies. Notably, nanotechnology applications in regenerative medicine and cellular therapies are controversial because of ethical and legal considerations. Therefore, this review describes nanotechnology in cell-based applications and focuses on newly proposed nano-based approaches. Cutting-edge strategies to engineer biological tissues and the ethical, legal, and social considerations of nanotechnology in regenerative nanomedicine applications are also discussed.


Asunto(s)
Nanotecnología , Medicina Regenerativa , Nanomedicina , Ingeniería de Tejidos , Materiales Biocompatibles/uso terapéutico
9.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194903, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538966

RESUMEN

BACKGROUND: Efficient differentiation of mesenchymal stem cells (MSCs) into a desired cell lineage remains challenging in cell-based therapy and regenerative medicine. Numerous efforts have been made to efficiently promote differentiation of MSCs into osteoblast lineage. Accordingly, epigenetic signatures emerge as a key conductor of cell differentiation. Among them, Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase appears to suppress osteogenesis. Curcumin is an osteoinductive natural polyphenol compound which supposedly modulates epigenetic mechanisms. Hence, the current study aims to address the role of the EZH2 epigenetic factor in osteogenic activity of MSCs after Curcumin treatment. METHODS: The effect of Curcumin on viability and osteogenic differentiation was evaluated at different time points in vitro. The expression level of EZH2 was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) after 14 and 21 days. RESULTS: MTT results showed no cytotoxic effects at concentrations of 10 and 15 µM of Curcumin and cells survived up to 70 % at all time-points. qRT-PCR results demonstrated that Curcumin significantly enhanced the expression levels of osteogenic markers that included Runx2, Osterix, Collagen type I, Osteopontin and Osteocalcin at day 21. CONCLUSIONS: Interestingly, we observed that the expression level of the EZH2 gene was downregulated in the presence of Curcumin compared to the control group during osteogenesis. This study confirmed that Curcumin acts as an epigenetic switch to regulate osteoblast differentiation specifically through the EZH2 suppression.


Asunto(s)
Curcumina , Células Madre Mesenquimatosas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Osteogénesis/genética , Curcumina/farmacología , Curcumina/metabolismo , Histona Metiltransferasas/metabolismo , Diferenciación Celular/genética , Epigénesis Genética
10.
Cell J ; 25(12): 854-862, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38192256

RESUMEN

OBJECTIVE: The collagen-induced arthritis (CIA) model is the most commonly studied autoimmune model of rheumatoid arthritis (RA). In this study, we investigated the usefulness of collagen type II emulsified in Freund's incomplete adjuvant (CII/IFA) as a suitable method for establishing RA in Lewis rats. The aim of the present study was to present a straightforward and effective method for inducing CIA in rats. MATERIALS AND METHODS: In this experimental study, animals were divided into two equal groups (n=5); control and CIA. Five rats were injected intradermally at the base of the tail with a 0.2 ml CII/IFA emulsion. On the seventh day, a 0.1 ml CII/IFA emulsion booster was injected. Arthritis symptoms that arose were evaluated at clinical, histological, radiological, and at protein expression levels to find out if the disease had been induced successfully. RESULTS: Our finding showed a decreasing trend in the body weight during the RA induction period, while the arthritis score and paw thickness were increased during this period. The results of the enzyme-linked immunosorbent assay (ELISA) for serum samples revealed that the levels of proinflammatory cytokines, interleukin (IL)-1ß, IL-6, IL-17, and tumor necrosis factor (TNF)-α and anti-CII IgG were significantly increased in CIA rats compared to the control group. After CIA induction, the level of anti-inflammatory protein IL-10 was decreased significantly. Radiographic examination of the hind paws showed soft tissue swelling, bone erosion, and osteophyte formation in CIA rats. Additionally, based on histological evaluations, the hind paws of the CIA group showed pannus formation, synovial hyperplasia, and bone and cartilage destruction. CONCLUSION: It seems that CII/IFA treatment can be an appropriate and effective method to induce RA disease in Lewis rats. This well-established and well-characterized CIA model in female Lewis rats could be considered to study aspects of RA and develop novel anti-arthritic agents.

11.
Sci Rep ; 12(1): 19827, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400827

RESUMEN

Extracellular vesicles (EVs) have therapeutic effects on osteoarthritis (OA). Some recent strategies could elevate EV's therapeutic properties including cell aggregation, co-culture, and 3D culture. It seems that a combination of these strategies could augment EV production and therapeutic potential. The current study aims to evaluate the quantity of EV yield and the therapeutic effect of EVs harvested from rabbit mesenchymal stem cells (MSCs) aggregates, chondrocyte aggregates, and their co-aggregates in a dynamic 3D culture in a rat osteoarthritis model. MSC and chondrocytes were aggregated and co-aggregated by spinner flasks, and their conditioned medium was collected. EVs were isolated by size exclusion chromatography and characterized in terms of size, morphology and surface markers. The chondrogenic potential of the MSC-ag, Cho-ag and Co-ag EVs on MSC micromass differentiation in chondrogenic media were assessed by qRT-PCR, histological and immunohistochemical analysis. 50 µg of MSC-ag-EVs, Cho-ag-EVs and Co-ag-EVs was injected intra-articularly per knee of OA models established by monoiodoacetate in rats. After 8 weeks follow up, the knee joints were harvested and analyzed by radiographic, histological and immunohistochemical features. MSC/chondrocyte co-aggregation in comparison to MSC or chondrocyte aggregation could increase EV yield during dynamic 3D culture by spinner flasks. Although MSC-ag-, Cho-ag- and Co-ag-derived EVs could induce chondrogenesis similar to transforming growth factor-beta during in vitro study, Co-ag-EV could more effectively prevent OA progression than MSC-ag- and Cho-ag-EVs. Our study demonstrated that EVs harvested from the co-aggregation of MSCs and chondrocytes could be considered as a new therapeutic potential for OA treatment.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Ratas , Animales , Conejos , Condrocitos , Vesículas Extracelulares/metabolismo , Osteoartritis/terapia , Osteoartritis/metabolismo , Diferenciación Celular
12.
Biomed Mater ; 17(6)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35995044

RESUMEN

Owing to the similarity of hydrogels to cartilage extracellular matrix, they have been extensively utilized in the chondral lesions. Moreover, their tunable administration properties are desirable for reducing injuries in lesion sites. Generally, injectable hydrogels are mechanically weak, requiring some modifications for being used as a cell carrier in place of articular cartilage. In this study, a combination ofß-cyclodextrin-grafted alginate (Alg-ß-CD) and pluronic-amine with multiple physical crosslinking was used for the first time. Supramolecular interactions, including electrostatic forces, host-guest interaction, and hydrophobic interaction with increasing temperature maintain injectability of hydrogels while these interactions boost mechanical properties to the extent that shear modulus surpassed 40 kPa. Vacantß-CD cavities in conjunction with gel network were exploited for kartogenin (KGN) loading. All groups had gel time of less than one minute and gel temperature was 28 °C. No toxic effect of hydrogels on encapsulated cells was observed. While the optimum combination of polymers provided a sustainable release for KGN, it also extended thein vitrodegradation time of hydrogels from six days to two weeks. KGN facilitated encapsulated mesenchymal stem cells differentiation towards chondrocytes. Taken together, the synthesized hydrogel proved to be a promising candidate for being utilized in cartilage regeneration.


Asunto(s)
Cartílago Articular , Ciclodextrinas , Células Madre Mesenquimatosas , Alginatos , Aminas , Anilidas , Ciclodextrinas/metabolismo , Ciclodextrinas/farmacología , Hidrogeles/química , Ácidos Ftálicos , Poloxámero/metabolismo , Poloxámero/farmacología
13.
Stem Cell Res Ther ; 13(1): 213, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619148

RESUMEN

INTRODUCTION: Mesenchymal stromal cells (MSCs) have opened a new window to treat inflammatory and non-inflammatory diseases. Nonetheless, their clinical applications require rigorous control and monitoring procedures to ensure full compliance with the principles of good manufacturing practice (GMP). Various evaluations should be passed in conjunction with the development of these newly emerging therapeutic products from bench-to-bedside. These evaluations include in vitro characterization, preclinical studies, and clinical trials to ensure product safety and efficacy. Therefore, a robust and well-designed preclinical study is critical to confirm product safety. This study aims to determine the probable toxicity effects of local and systemic injections of cryopreserved human bone marrow-derived clonal MSCs (BM-cMSCs) during subacute and subchronic periods of time. METHODS: BM-cMSCs were characterized according to the International Society for Cell and Gene Therapy (ISCT) criteria for MSCs. Both safety and toxicity of the BM-cMSCs population produced under GMP-compatible conditions were assessed in both sexes of Sprague Dawley (SD) rats via systemic intravenous (IV) administration and local injection in intervertebral disc (IVD). Behavioral changes, clinical signs of toxicity, and changes in body weight, water and food consumption were the important variables for product toxicity testing over 14 consecutive days during the subacute period and 90 consecutive days during the subchronic period. At the end of the assessment periods, the rats were killed for histopathology analysis of the target tissues. The BM-cMSCs potential for tumorigenicity was checked in nude mice. RESULTS: Single IV and IVD injections of BM-cMSCs did not cause significant signs of clinical toxicity, or changes in laboratory and histopathology data during the subacute (14 day) and subchronic (90 day) periods. Ex vivo-expanded and cryopreserved BM-cMSCs did not induce tumor formation in nude mice. CONCLUSION: The results suggest that local and systemic administrations of xenogeneic BM-cMSCs in both sexes of SD rats do not cause toxicity during the subacute and subchronic periods of time. Also, BM-cMSCs were non-tumorigenic in nude mice.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Médula Ósea , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Ratas , Ratas Sprague-Dawley
14.
Beilstein J Nanotechnol ; 13: 363-389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529803

RESUMEN

Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.

15.
Adv Colloid Interface Sci ; 305: 102706, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35623113

RESUMEN

The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.


Asunto(s)
Bivalvos , Fracturas Óseas , Adhesivos/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Bivalvos/química , Huesos
16.
Sci Rep ; 12(1): 4015, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256711

RESUMEN

Mesenchymal stem cells (MSCs) are at the forefront of research for a wide range of diseases, including osteoarthritis (OA). Despite having attracted the attention of orthopedists, current MSC therapy techniques are limited by poor MSC implantation in tissue defects and lack of lateral tissue integration, which has restricted the efficacy of cell therapy to alleviate OA symptoms only. Here, we developed targeted MSC therapy for OA cartilage using a cell-tissue matchmaking nanoconstruct (C-TMN). C-TMN, as an MSC vehicle, consists of a central iron oxide nanoparticle armed with two types of antibodies, one directed at the MSC surface and the other against articular cartilage. We treated rat OA articular cartilage with intra-articular injections of C-TMN with and without exogenous MSCs. We observed substantial improvements in both symptomatic and radiographic OA caused by C-TMN, which was independent of exogenous MSCs. This new approach could predict a promising future for OA management.


Asunto(s)
Cartílago Articular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis , Animales , Cartílago Articular/metabolismo , Inyecciones Intraarticulares , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis/metabolismo , Osteoartritis/terapia , Ratas
17.
Stem Cell Res Ther ; 13(1): 129, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346367

RESUMEN

Extracellular vesicles (EVs) are advanced therapeutic strategies that can be used to efficiently treat diseases. Promising features of EVs include their innate therapeutic properties and ability to be engineered as targeted drug delivery systems. However, regulation of EV uptake is one challenge of EV therapy that must be overcome to achieve an efficient therapeutic outcome. Numerous efforts to improve the factors that affect EV uptake include the selection of a cell source, cell cultivation procedure, extraction and purification methods, storage, and administration routes. Limitations of rapid clearance, targeted delivery, and off-targeting of EVs are current challenges that must be circumvented. EV engineering can potentially overcome these limitations and provide an ideal therapeutic use for EVs. In this paper, we intend to discuss traditional strategies and their limitations, and then review recent advances in EV engineering that can be used to customize and control EV uptake for future clinical applications.


Asunto(s)
Vesículas Extracelulares , Transporte Biológico , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/metabolismo
18.
Iran J Biotechnol ; 20(4): e3154, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38344313

RESUMEN

Objectives: In this study, gelatin was chosen as a novel sacrificial agent in co-electrospun with polycaprolacton-nanohydroxyapatite (PCL-nHA). Materials and Methods: After electrospinnig, gelatin was washed with water, and the prepared scaffold was ultrasonicated. Morphological and structural properties of the prepared scaffolds were studied by SEM. Fourier transform infrared (FTIR) spectroscopy and water contact angle analysis were used to evaluate the removal of gelatin. Results: According to the SEM results, the pore size of the modified scaffolds was increased 3-folds compared to the control sample. For PCL-nHA gelatin: (80:20) after the treatment, the average cell infiltration was 42.7 µm, while there was no infiltration for the control group. The modified electrospun scaffold significantly enhanced the osteogenic differentiation of hBMSCs as verified by increased ALP activity and upregulation of runt-related transcription factor 2 (RUNX2), collagen type 1 (COL1) and osteocalcin (OCN) genes. Conclusion: Co-electrospun PCL-nHA with gelatin as a sacrificial agent in combination with ultrasonication may be an effective, economic and controllable method to increase the pore size in electrospun scaffolds for bone tissue engineering applications.

19.
Biomed Res Int ; 2021: 9011548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938811

RESUMEN

The inability of cartilage to self-repair necessitates an effective therapeutic approach to restore damaged tissues. Extracellular vesicles (EVs) are attractive options because of their roles in cellular communication and tissue repair where they regulate the cellular processes of proliferation, differentiation, and recruitment. However, it is a challenge to determine the relevant cell sources for isolation of EVs with high chondrogenic potential. The current study aims to evaluate the chondrogenic potential of EVs derived from chondrocytes (Cho-EV) and mesenchymal stem cells (MSC-EV). The EVs were separately isolated from conditioned media of both rabbit bone marrow MSCs and chondrocyte cultures. The isolated vesicles were assessed in terms of size, morphology, and surface marker expression. The chondrogenic potential of MSCs in the presence of different concentrations of EVs (50, 100, and 150 µg/ml) was evaluated during 21 days, and chondrogenic surface marker expressions were checked by qRT-PCR and histologic assays. The extracted vesicles had a spherical morphology and a size of 44.25 ± 8.89 nm for Cho-EVs and 112.1 ± 10.10 nm for MSC-EVs. Both groups expressed the EV-specific surface markers CD9 and CD81. Higher expression of chondrogenic specified markers, especially collagen type II (COL II), and secretion of glycosaminoglycans (GAGs) and proteoglycans were observed in MSCs treated with 50 and 100 µg/ml MSC-EVs compared to the Cho-EVs. The results from the use of EVs, particularly MSC-EVs, with high chondrogenic ability will provide a basis for developing therapeutic agents for cartilage repair.


Asunto(s)
Condrocitos/fisiología , Condrogénesis/fisiología , Vesículas Extracelulares/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Biomarcadores/metabolismo , Cartílago/metabolismo , Cartílago/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Vesículas Extracelulares/metabolismo , Glicosaminoglicanos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Proteoglicanos/metabolismo , Conejos
20.
Biomed Mater ; 16(4)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34102624

RESUMEN

Articular cartilage has an avascular structure with a poor ability for self-repair; therefore, many challenges arise in cases of trauma or disease. It is of utmost importance to identify the proper biomaterial for tissue repair that has the capability to direct cell recruitment, proliferation, differentiation, and tissue integration by imitating the natural microenvironment of cells and transmitting an orchestra of intracellular signals. Cartilage extracellular matrix (cECM) is a complex nanostructure composed of divergent proteins and glycosaminoglycans (GAGs), which regulate many functions of resident cells. Numerous studies have shown the remarkable capacity of ECM-derived biomaterials for tissue repair and regeneration. Moreover, given the importance of biodegradability, biocompatibility, 3D structure, porosity, and mechanical stability in the design of suitable scaffolds for cartilage tissue engineering, demineralized bone matrix (DBM) appears to be a promising biomaterial for this purpose, as it possesses the aforementioned characteristics inherently. To the best of the authors' knowledge, no comprehensive review study on the use of DBM in cartilage tissue engineering has previously been published. Since so much work is needed to address DBM limitations such as pore size, cell retention, and so on, we decided to draw the attention of researchers in this field by compiling a list of recent publications. This review discusses the implementation of composite scaffolds of natural or synthetic origin functionalized with cECM or DBM in cartilage tissue engineering. Cutting-edge advances and limitations are also discussed in an attempt to provide guidance to researchers and clinicians.


Asunto(s)
Sustitutos de Huesos , Huesos , Cartílago Articular , Matriz Extracelular Descelularizada , Ingeniería de Tejidos , Animales , Huesos/química , Huesos/citología , Huesos/metabolismo , Cartílago Articular/química , Cartílago Articular/citología , Cartílago Articular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Ratones , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...