Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Talanta ; 280: 126742, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173251

RESUMEN

The simple, effective and highly sensitive detection of hydrogen peroxide (H2O2), which belongs to the reactive oxygen species (ROS), at low concentrations plays an indispensable role in the field of environmental protection, biological research and safety. In this study, a dual-mode optical biosensor, UiO-66@OPD, was developed based on the inherent peroxidase mimicking activity of UiO-66 (Zr) and the optical reaction of ortho-phenylenediamine (OPD) by extending the π-system through oxidative coupling, prototropism and elimination to form OPDox, thereby exhibiting strong orangish absorbance and greenish fluorescence. The catalase-mimicking activity of UiO-66 (Zr) was demonstrated by the catalytic oxidation of methylene blue in the presence of H2O2. Moreover, the Michaelis-Menten kinetic model confirmed the intrinsic peroxidase-like activity of UiO-66@OPD as a modified MOFzyme. The synthesized UiO-66 (Zr) facilitated the oxidation of OPD to OPDox by degrading H2O2 to the hydroxyl radicals. During the oxidation process, the absorption peak at 415 nm and the fluorescence peak at 565 nm of the synthesized probe were significantly enhanced by increasing the H2O2 concentration. Moreover, a colorimetric and fluorometric ultrasensitive sensor shows a good linear relationship between the intensity enhancement and H2O2 concentration in the range of 0-600 nM for absorption and fluorescence spectra with R2 = 0.9772, and R2 = 0.9948, respectively. To demonstrate the biological performance and biocompatibility of UiO-66@OPD as a biosensor, MTT evaluation was performed for the three cell lines MCF-10 A, HEK293 and A549, indicating high biocompatibility and good cell viability for biological applications. Ultimately, this convenient, environmentally friendly, biocompatible and cost-effective catalase-mimicking-based sensor system will open a new perspective for the development of portable kite-based biosensors In vitro.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Humanos , Técnicas Biosensibles/métodos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Fenilendiaminas/química , Estructuras Metalorgánicas/química , Límite de Detección , Circonio/química , Materiales Biocompatibles/química
3.
Sci Rep ; 14(1): 17730, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085363

RESUMEN

This study explored the catalytic performance of two robust zirconium-based metal-organic frameworks (MOFs), MIP-202(Zr) and UiO-66-(CO2H)2 in the ring-opening of epoxides using alcohols and amines as nucleophilic reagents. The MOFs were characterized by techniques such as FT-IR, PXRD, FE-SEM, and EDX. Through systematic optimization of key parameters (catalyst amount, time, temperature, solvent), MIP-202(Zr) achieved 99% styrene oxide conversion in 25 min with methanol at room temperature using 5 mg catalyst. In contrast, UiO-66-(CO2H)2 required drastically harsher conditions of 120 min, 60 °C, and four times the catalyst loading to reach 98% conversion. A similar trend was observed for ring-opening with aniline -MIP-202(Zr) gave 93% conversion in one hour at room temperature, while UiO-66-(CO2H)2 needed two hours at 60 °C for 95% conversion. The superior performance of MIP-202(Zr) likely stems from cooperative Brønsted/Lewis acid sites and higher proton conductivity enabling more efficient epoxide activation. Remarkably, MIP-202(Zr) maintained consistent activity over five recycles in the ring-opening of styrene oxide by methanol and over three recycles in the ring-opening of styrene oxide by aniline. Testing various epoxide substrates and nucleophiles revealed trends in reactivity governed by electronic and steric effects. The results provide useful insights into tuning Zr-MOF-based catalysts and highlight the promise of the cost-effective and sustainable MIP-202(Zr) for diverse epoxide ring-opening reactions on an industrial scale.

4.
Chemosphere ; 353: 141543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447898

RESUMEN

Metal-organic frameworks (MOFs) are highly promising adsorbents with notable properties such as elevated adsorption capacities and versatile surface design capabilities. This study introduces two distinct synthesis methods, one lasting 1 h and the other 24 h, for UiO-66 and NH2-UiO-66. While both methods yield structures with comparable crystallinity and morphology, the adsorption performance of the cationic methylene blue dye varies at different pH levels. Despite the 24 h synthesis time being optimal for maximum adsorption in both MOFs, the relative difference in NH2-UiO-66 adsorption percentage at different times suggests reduced dependency on synthesis time for this property. Notably, NH2-UiO-66 exhibits consistent and effective performance across three pH levels, warranting further investigation into its adsorption kinetics and isotherm. The achievement of high adsorption efficiency coupled with a significantly reduced synthesis time underscores the importance of developing simplified synthetic methods, essential for enhancing the practical applicability of MOFs in diverse applications.


Asunto(s)
Estructuras Metalorgánicas , Azul de Metileno , Ácidos Ftálicos , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
5.
ACS Omega ; 9(4): 4581-4593, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313520

RESUMEN

The issue of water resource pollution resulting from the discharge of dyes is a matter of great concern for the environment. In this investigation, a new ternary heterogeneous Mg-Al LDH@g-C3N4X@Ag3PO4Y (X = wt % of g-C3N4 with respect to Mg-Al layered double hydroxide (LDH) and Y = wt % of Ag3PO4 loaded on Mg-Al LDH@g-C3N430) nanocomposite was prepared with the aim of increasing charge carrier separation and enhancement of photocatalytic performance to degrade methylene blue (MB) dye. The prepared samples were subjected to characterization via Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, and photoelectrochemical analysis. It was observed that in the presence of the composite of Mg-Al LDH and g-C3N4, the photocatalytic decomposition of MB under 150 W mercury lamp illumination increases significantly as opposed to Mg-Al LDH alone, and the Mg-Al LDH@g-C3N4 level with Ag3PO4 coating causes the complete degradation of MB to occur in less time. The outcomes show that the Mg-Al LDH@g-C3N430@Ag3PO45 nanocomposite demonstrated the highest photodegradation activity (99%). Scavenger tests showed that the two most effective agents in the photodegradation of MB are holes and hydroxyl radicals, respectively. Finally, a type II heterojunction photocatalytic degradation mechanism for MB by Mg-Al LDH@g-C3N430@Ag3PO45 was proposed.

6.
ACS Omega ; 9(1): 1183-1195, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222665

RESUMEN

Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.

7.
Chemosphere ; 350: 141011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145848

RESUMEN

Environmental pollution, particularly water pollution caused by organic substances like synthetic dyes, is a pressing global concern. This study focuses on enhancing the adsorption capacity of layered double hydroxides (LDHs) to remove methylene blue (MB) dye from water. The synthesized materials are characterized using techniques like FT-IR, XRD, SEM, TEM, TGA, EDS, BET, BJH, AFM, and UV-Vis DRS. Adsorption experiments show that Zn-Al LDH@ext exhibits a significant adsorption capacity for MB dye compared to pristine LDH. In addition, Zn-Al LDH@ext shows a significant increase in stability, which is attributed to the presence of phenolic compounds in the extract and the interactions between the functional groups of the extract and LDH. The pH and adsorbent dosage optimizations show that pH 7 and 0.7 g of Zn-Al LDH@ext are optimal conditions for efficient MB removal. The study assessed adsorption kinetics through the examination of Langmuir, Freundlich, and Temkin isotherms. Additionally, four kinetic models, namely pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich, were analyzed. The results indicated that the Temkin isotherm (R2 = 0.9927), and pseudo-second-order (R2 = 0.9999) kinetic provided the best fit to the experimental data. This study introduces a novel approach to enhance adsorption efficiency using modified LDHs, contributing to environmentally friendly and cost-effective water treatment methods.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Hidróxidos/química , Adsorción , Cinética , Zinc/química , Concentración de Iones de Hidrógeno
8.
Sci Rep ; 13(1): 17007, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813894

RESUMEN

This study conducted an evaluation of the corrosion behavior of an aluminum alloy utilized in the Isfahan Miniature Neutron Source Reactor (MNSR). The component analyzed, dry channel (DC), had been exposed to radiation for 12 years in a water environment within the reactor pool since its installation. To determine the effect of radiation on the corrosion of the LT-21 aluminum alloy used in the DC, different parts of the pipe were sampled and various tests were performed. These tests included mechanical strengths (impact, and micro-hardening), XRD, TEM, SEM-EDS, and potentiodynamic polarization (PDP). The parameters measured included corrosion potential, corrosion rate, changes in microscopic structure, and mechanical properties of the aluminum alloy along the entire length of the DC. The neutron and gamma dose distribution along the height of the DC, which was 540 cm, was calculated to determine the correlation between the dose distribution and observed corrosion. The study found that the corrosion mechanisms were complex and resulted from the simultaneous presence of the DC in the pool water and radiation from the reactor core. The observed results are presented and discussed in this study.

9.
ACS Appl Mater Interfaces ; 15(33): 39765-39776, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37614003

RESUMEN

Novel thin-film nanocomposite (TFN) membranes modified by the MoS2@Zeolite X nanocomposite were made and studied for desalination by the forward osmosis (FO) method. Herein, MoS2@Zeolite X nanocomposite (MoS2@Z) and zeolite X particles are integrated into the polyamide (PA) selective layer of the TFN membranes, separately. The aim of this study is the synthesis of nanocomposites containing hydrophilic zeolite X particles with a modified surface and pore and improvement of their effective properties on desalination and antifouling performance. For this purpose, MoS2 nanosheets with a high hydrophilicity were selected. The existence of polymer-matrix-compatible MoS2@Z inside the PA active layer caused the formation of a defect-free smooth surface with further channels within this layer that could increase the water flux and fouling resistance of the TFN membranes. The TFN-MZ2 membrane (containing 0.01 wt % MoS2@Z) showed the top desalination performance in the FO process. In contrast to the pristine thin-film composite (TFC) and TFN-Z2 membrane (containing 0.025 wt % zeolite X, the most optimal membrane among the zeolite-modified membranes), its water flux has increased by 2.6 and 1.8 times, respectively. Furthermore, in the fouling test, this optimal TFN-MZ2 membrane with a flux decrement of 19.6% revealed an ∼2.2- and 1.8-fold enhancement in antifouling tendency compared to the TFC and TFN-Z2, respectively. Also, based on the antibiofouling test, the water flux drop of 48.6% for the TFC membrane has reached 36.9% for the optimal membrane. Hence, this high-performance TFN-MZ2 membrane shows good capability for commercial employment in FO desalination application.

12.
Sci Rep ; 12(1): 15351, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097028

RESUMEN

Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.


Asunto(s)
Cobre , Nanopartículas del Metal , Aminación , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bioingeniería , Cobre/farmacología , Células HEK293 , Humanos , Óxidos , Porosidad
13.
Adv Colloid Interface Sci ; 308: 102771, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36113311

RESUMEN

Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.


Asunto(s)
Nanocompuestos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Fenómenos Magnéticos , Nanocompuestos/química , Nanotecnología , Medicina Regenerativa
14.
Sci Rep ; 12(1): 12105, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840687

RESUMEN

The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.


Asunto(s)
Nanocompuestos , Paladio , Antibacterianos/química , Antibacterianos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanocompuestos/química , Paladio/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus
15.
Sci Rep ; 12(1): 9461, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676410

RESUMEN

Doxorubicin (DOX) is a potent anti-cancer agent and there have been attempts in developing nanostructures for its delivery to tumor cells. The nanoparticles promote cytotoxicity of DOX against tumor cells and in turn, they reduce adverse impacts on normal cells. The safety profile of nanostructures is an important topic and recently, the green synthesis of nanoparticles has obtained much attention for the preparation of biocompatible carriers. In the present study, we prepared layered double hydroxide (LDH) nanostructures for doxorubicin (DOX) delivery. The Cu-Al LDH nanoparticles were synthesized by combining Cu(NO3)2·3H2O and Al(NO3)3·9H2O, and then, autoclave at 110. The green modification of LDH nanoparticles with Plantago ovata (PO) was performed and finally, DOX was loaded onto nanostructures. The FTIR, XRD, and FESEM were employed for the characterization of LDH nanoparticles, confirming their proper synthesis. The drug release study revealed the pH-sensitive release of DOX (highest release at pH 5.5) and prolonged DOX release due to PO modification. Furthermore, MTT assay revealed improved biocompatibility of Cu-Al LDH nanostructures upon PO modification and showed controlled and low cytotoxicity towards a wide range of cell lines. The CLSM demonstrated cellular uptake of nanoparticles, both in the HEK-293 and MCF-7 cell lines; however, the results were showed promising cellular internalizations to the HEK-293 rather than MCF-7 cells. The in vivo experiment highlighted the normal histopathological structure of kidneys and no side effects of nanoparticles, further confirming their safety profile and potential as promising nano-scale delivery systems. Finally, antibacterial test revealed toxicity of PO-modified Cu-Al LDH nanoparticles against Gram-positive and -negative bacteria.


Asunto(s)
Doxorrubicina , Nanopartículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Hidróxidos/química , Células MCF-7 , Nanopartículas/química
16.
Chemosphere ; 299: 134359, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35318020

RESUMEN

Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.


Asunto(s)
Benzamidas , Extractos Vegetales , Células HEK293 , Células HeLa , Humanos , Estructuras Metalorgánicas , Ácidos Ftálicos
17.
Int J Pharm ; 618: 121647, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35288221

RESUMEN

In this study, the potential of using MIL-100(Fe) metal-organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF formulation were investigated against melanoma A375 cell lines. The results revealed that the PEG coating (PEGylation) changed the surface charge of MOF from -2.8 ± 0.9 mV to -42.8 ± 1.2 mV, which can contribute to the colloidal stability of MOF. The PEGylation showed a significant effect on controlled drug release, especially in SCM, which increases the complete release time from 60 h to 12 days. Moreover, both of the drug-containing MOFs showed more toxicity than DTIC and unloaded MOFs, confirming that the cumulative release of drug and better cellular uptake of NPs lead to increased toxicity.


Asunto(s)
Melanoma , Estructuras Metalorgánicas , Humanos , Dacarbazina/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Melanoma/tratamiento farmacológico , Estructuras Metalorgánicas/química , Polietilenglicoles/uso terapéutico
18.
Sci Total Environ ; 825: 153902, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35182622

RESUMEN

Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 µm and 0.78 to ≈0.80 µm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
19.
J Nanostructure Chem ; 12(5): 919-932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34580605

RESUMEN

There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan). Supplementary Information: The online version contains supplementary material available at 10.1007/s40097-021-00446-1.

20.
Crit Rev Food Sci Nutr ; 62(13): 3658-3697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33399020

RESUMEN

The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as ß-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.


Asunto(s)
Carotenoides , Sistema de Administración de Fármacos con Nanopartículas , Disponibilidad Biológica , Suplementos Dietéticos , Excipientes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA