Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 12(1): 251, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431870

RESUMEN

Chloroplast function requires the coordinated action of nuclear- and chloroplast-derived proteins, including several hundred nuclear-encoded pentatricopeptide repeat (PPR) proteins that regulate plastid mRNA metabolism. Despite their large number and importance, regulatory mechanisms controlling PPR expression are poorly understood. Here we show that the Arabidopsis NOT4A ubiquitin-ligase positively regulates the expression of PROTON GRADIENT REGULATION 3 (PGR3), a PPR protein required for translating several thylakoid-localised photosynthetic components and ribosome subunits within chloroplasts. Loss of NOT4A function leads to a strong depletion of cytochrome b6f and NAD(P)H dehydrogenase (NDH) complexes, as well as plastid 30 S ribosomes, which reduces mRNA translation and photosynthetic capacity, causing pale-yellow and slow-growth phenotypes. Quantitative transcriptome and proteome analysis of the not4a mutant reveal it lacks PGR3 expression, and that its molecular defects resemble those of a pgr3 mutant. Furthermore, we show that normal plastid function is restored to not4a through transgenic PGR3 expression. Our work identifies NOT4A as crucial for ensuring robust photosynthetic function during development and stress-response, through promoting PGR3 production and chloroplast translation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Mutación/genética , Fotosíntesis , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
3.
Plant J ; 105(5): 1431-1442, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33258209

RESUMEN

We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6 f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts' redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.


Asunto(s)
Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Capsicum/genética , Frutas/genética , Frutas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Plastidios/genética , Proteómica/métodos
4.
Plant J ; 104(2): 546-558, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745315

RESUMEN

Casein kinase 2 is a ubiquitous protein kinase that has puzzled researchers for several decades because of its pleiotropic activity. Here, we set out to identify the in vivo targets of plastid casein kinase 2 (pCK2) in Arabidopsis thaliana. Survey phosphoproteome analyses were combined with targeted analyses with wild-type and pck2 knockdown mutants to identify potential pCK2 targets by their decreased phosphorylation state in the mutant. To validate potential substrates, we complemented the pck2 knockdown line with tandem affinity tag (TAP)-tagged pCK2 and found it to restore growth parameters, as well as many, but not all, putative pCK2-dependent phosphorylation events. We further performed a targeted analysis at the end-of-night to increase the specificity of target protein identification. This analysis confirmed light-independent phosphorylation of several pCK2 target proteins. Based on the aforementioned data, we define a set of in vivo pCK2-targets that span different chloroplast functions, such as metabolism, transcription, translation and photosynthesis. The pleiotropy of pCK2 functions is also manifested by altered state transition kinetics during short-term acclimation and significant alterations in the mutant metabolism, supporting its function in photosynthetic regulation. Thus, our data expand our understanding on chloroplast phosphorylation networks and provide insights into kinase networks in the regulation of chloroplast functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasa de la Caseína II/metabolismo , Plastidios/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Quinasa de la Caseína II/genética , Proteínas de Cloroplastos/metabolismo , Oscuridad , Técnicas de Silenciamiento del Gen , Luz , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Proteómica/métodos
6.
Nat Commun ; 11(1): 1662, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245955

RESUMEN

The proteasome is an essential protein-degradation machinery in eukaryotic cells that controls protein turnover and thereby the biogenesis and function of cell organelles. Chloroplasts import thousands of nuclear-encoded precursor proteins from the cytosol, suggesting that the bulk of plastid proteins is transiently exposed to the cytosolic proteasome complex. Therefore, there is a cytosolic equilibrium between chloroplast precursor protein import and proteasomal degradation. We show here that a shift in this equilibrium, induced by mild genetic proteasome impairment, results in elevated precursor protein abundance in the cytosol and significantly increased accumulation of functional photosynthetic complexes in protein import-deficient chloroplasts. Importantly, a proteasome lid mutant shows improved photosynthetic performance, even in the absence of an import defect, signifying that functional precursors are continuously degraded. Hence, turnover of plastid precursors in the cytosol represents a mechanism to constrain thylakoid membrane assembly and photosynthetic electron transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Cloroplastos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Cloroplastos/metabolismo , Citosol/metabolismo , Mutación , Fotosíntesis , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/metabolismo , Proteolisis , Estrés Fisiológico
7.
PLoS One ; 14(3): e0213364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865669

RESUMEN

We report a systematic analysis of chloroplast high-molecular mass protein complexes using a combination of native gel electrophoresis and absolute protein quantification by MSE. With this experimental setup, we characterized the effect of the tic56-3 mutation in the 1-MDa inner envelope translocase (TIC) on the assembly of the chloroplast proteome. We show that the tic56-3 mutation results in a reduction of the 1-MDa TIC complex to approximately 10% of wildtype levels. Hierarchical clustering confirmed the association of malate dehydrogenase (MDH) with an envelope-associated FtsH/FtsHi complex and suggested the association of a glycine-rich protein with the 1-MDa TIC complex. Depletion of this complex leads to a reduction of chloroplast ATPase to approx. 75% of wildtype levels, while the abundance of the FtsH/FtsHi complex is increased to approx. 140% of wildtype. The accumulation of the major photosynthetic complexes is not affected by the mutation, suggesting that tic56-3 plants can sustain a functional photosynthetic machinery despite a significant reduction of the 1-MDa TIC complex. Together our analysis expands recent efforts to catalogue the native molecular masses of chloroplast proteins and provides information on the consequences of impaired accumulation of the 1-MDa TIC translocase for chloroplast proteome assembly.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Peso Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteoma
8.
New Phytol ; 221(2): 866-880, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169890

RESUMEN

The photosynthetic machinery of plants must be regulated to maximize the efficiency of light reactions and CO2 fixation. Changes in free Ca2+ in the stroma of chloroplasts have been observed at the transition between light and darkness, and also in response to stress stimuli. Such Ca2+ dynamics have been proposed to regulate photosynthetic capacity. However, the molecular mechanisms of Ca2+ fluxes in the chloroplasts have been unknown. By employing a Ca2+ reporter-based approach, we identified two chloroplast-localized Ca2+ transporters in Arabidopsis thaliana, BICAT1 and BICAT2, that determine the amplitude of the darkness-induced Ca2+ signal in the chloroplast stroma. BICAT2 mediated Ca2+ uptake across the chloroplast envelope, and its knockout mutation strongly dampened the dark-induced [Ca2+ ]stroma signal. Conversely, this Ca2+ transient was increased in knockout mutants of BICAT1, which transports Ca2+ into the thylakoid lumen. Knockout mutation of BICAT2 caused severe defects in chloroplast morphology, pigmentation and photosynthetic light reactions, rendering bicat2 mutants barely viable under autotrophic growth conditions, while bicat1 mutants were less affected. These results show that BICAT transporters play a role in chloroplast Ca2+ homeostasis. They are also involved in the regulation of photosynthesis and plant productivity. Further work will be required to reveal whether the effect on photosynthesis is a direct result of their role as Ca2+ transporters.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Oscuridad , Genes Reporteros , Homeostasis , Fotosíntesis , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Protoplastos
10.
Methods Mol Biol ; 1696: 235-247, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086408

RESUMEN

Label-free peptide quantification is a promising approach for the large-scale characterization of proteome dynamics at low cost. Here, we describe a method for absolute label-free quantification using an untargeted approach for peptide fragmentation referred to as MSE. We show that spiked external standards provide sufficient accuracy for the quantification of proteins in complex samples resulting in similar protein quantification results as spectral counting. As an advantage, label-free quantification also works for small numbers of samples whereas spectral counting requires large datasets to result in a similar robustness. The sensitivity of protein identification increases significantly when ion mobility separation is included in addition to the standard LC-MS setup in the analysis workflow. Ion mobility decreases sample complexity and serves as an additional separation criterion to align a parent ion with its product ions after MSE fragmentation. As a drawback, quantification of high abundance proteins becomes inaccurate because of detector saturation. We describe here a suitable workflow to achieve good sensitivity for protein quantification and give initial guidance on data interpretation. To achieve good identification and quantification accuracy, the protein amount loaded onto the column should not exceed 400-600 ng. In a dynamic range window of 3-4 orders of magnitude, robust quantification can be obtained with complex samples comprising up to 2000-3000 proteins.


Asunto(s)
Péptidos/análisis , Proteoma/análisis , Proteómica/normas , Cromatografía Liquida/normas , Espectrometría de Movilidad Iónica , Proteómica/métodos , Espectrometría de Masas en Tándem/normas , Flujo de Trabajo
11.
Plant Cell ; 29(12): 3030-3050, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29167320

RESUMEN

An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.


Asunto(s)
Arabidopsis/enzimología , Membrana Celular/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotiana/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubo Polínico/enzimología , Tubo Polínico/crecimiento & desarrollo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/citología , Biocatálisis , Endocitosis , Colorantes Fluorescentes/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Modelos Biológicos , Fosforilación , Fosfotreonina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tubo Polínico/citología , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes , Nicotiana/citología
12.
Appl Environ Microbiol ; 83(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939602

RESUMEN

The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCEC. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.


Asunto(s)
Cobre/toxicidad , Cupriavidus/efectos de los fármacos , Compuestos de Oro/toxicidad , Iones/toxicidad , Nanopartículas del Metal/toxicidad , Suelo/química , Microbiología del Suelo
13.
J Biol Chem ; 292(17): 6952-6964, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28283569

RESUMEN

The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Cloroplastos/fisiología , Cromatografía de Afinidad , Citosol/metabolismo , Escherichia coli/metabolismo , Espectrometría de Masas , Mutación , Fosforilación , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
14.
Plant J ; 90(6): 1176-1186, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295753

RESUMEN

The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte de Electrón/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte de Electrón/genética , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética
15.
Plant Signal Behav ; 12(3): e1284726, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28125316

RESUMEN

Tic56 is an essential subunit of a 1-MDa protein complex at the inner chloroplast envelope membrane that comprises Tic100, Tic214 and the protein conducting channel protein Tic20-I. The complex was characterized as the "general protein import translocase" because mutants in either of its subunits have a severe growth phenotype and fail to assemble a photosynthetic machinery. In a recent publication we show that the albino phenotype of tic56-1 mutants results at least in part from a defect in ribosome assembly and a deficiency in plastid translation. We furthermore could not detect any impairment of protein import activity with plastids from tic56-3 mutants, despite a lack of full-length Tic56 and a decreased abundance of other 1-MDa complex subunits. These findings suggest that the 1-MDa complex consists of subunits that have functions other than protein import.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Transporte de Proteínas/fisiología , Proteómica
16.
Plant Physiol ; 172(4): 2429-2444, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733515

RESUMEN

Toc159-containing complexes at the outer chloroplast envelope membrane form stable supercomplexes with a 1-MD translocon at the inner chloroplast envelope membrane of which Tic56 is one essential subunit. While the single mutants tic56-1 and ppi2 (toc159) have an albino phenotype and are able to grow heterotrophically, we find the double mutant to be embryo lethal. Comprehensive quantitative proteome profiling with both single mutants in combination with GeneChip analyses identified a posttranscriptional defect in the accumulation of plastid ribosomal proteins and diminished expression of plastid encoded proteins. In the tic56-1 mutant, the assembly of functional ribosomes is furthermore hampered by a processing defect of the plastid 23S rRNA. Spectinomycin-treatment of wild-type plants phenocopies the molecular phenotype of plastid proteome accumulation in tic56-1 and to a smaller degree also ppi2 plastids, suggesting that a defect in plastid translation is largely responsible for the phenotype of both import mutants. Import experiments with the tic56-3 mutant revealed no significant defect in the import of small ribosomal protein 16 in the absence of full-length Tic56, suggesting that the defect in ribosome assembly in tic56-1 may be independent of a function of Tic56 in protein import. Our data establish a previously unknown link between plastid protein import, the processing of plastid rRNAs, and the assembly of plastid ribosomes and provide further knowledge on the function of the translocon components and the molecular basis for their albino phenotype.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Subunidades de Proteína/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Ribosomas/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/metabolismo , Proteómica , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/metabolismo , Espectinomicina/farmacología
17.
FEBS Lett ; 590(12): 1749-56, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27214872

RESUMEN

In chloroplasts, protein phosphorylation regulates important processes, including metabolism, photosynthesis, gene expression, and signaling. Because the hitherto known plastid protein kinases represent only a fraction of existing kinases, we aimed at the identification of novel plastid-localized protein kinases that potentially phosphorylate enzymes of the tetrapyrrole biosynthesis (TBS) pathway. We screened publicly available databases for proteins annotated as putative protein kinase family proteins with predicted chloroplast localization. Additionally, we analyzed chloroplast fractions which were separated by sucrose density gradient centrifugation by mass spectrometry. We identified four new candidates for protein kinases, which were confirmed to be plastid localized by expression of GFP-fusion proteins in tobacco leaves. A phosphorylation assay with the purified kinases confirmed the protein kinase activity for two of them.


Asunto(s)
Arabidopsis , Proteínas de Cloroplastos , Cloroplastos , Nicotiana , Proteínas Quinasas , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Nicotiana/enzimología , Nicotiana/genética
18.
J Exp Bot ; 67(13): 3873-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969742

RESUMEN

The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation.


Asunto(s)
Cloroplastos/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo
20.
Front Plant Sci ; 6: 559, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257763

RESUMEN

Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1-10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...