Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 15: 655901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483814

RESUMEN

Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced kinase 1 (PINK1), cause autosomal recessive familial Parkinson's disease (PD). While PD is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-motor symptoms, including cognitive dysfunction in the early pre-motor stages of the disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is a key structure for learning and memory, this study aimed to determine whether synaptic transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an age when we recently reported a gain of function at excitatory synapses onto spiny projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5- month old PINK1 KO rats and wild-type littermate controls, we observed no detectable differences in the strength of basal synaptic transmission, paired-pulse facilitation, or long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a general dysfunction of excitatory transmission throughout the brain at this young adult age when excitatory transmission is abnormal in the striatum.

2.
J Neural Eng ; 18(4)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33730704

RESUMEN

Objective.Non-invasive light delivery into the brain is needed forin vivooptogenetics to avoid physical damage. An innovative strategy could employ x-ray activation of radioluminescent particles (RLPs) to emit localized light. However, modulation of neuronal or synaptic function by x-ray induced radioluminescence from RLPs has not yet been demonstrated.Approach.Molecular and electrophysiological approaches were used to determine if x-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, were used as they are biocompatible with neuronal function and synaptic transmission.Main results.We show that 30 min of x-ray exposure at a rate of 0.042 Gy s-1caused no change in the strength of basal glutamatergic transmission during extracellular field recordings in mouse hippocampal slices. Additionally, long-term potentiation, a robust measure of synaptic integrity, was induced after x-ray exposure and expressed at a magnitude not different from control conditions (absence of x-rays). We found that x-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular light-sensitive domain of rhodopsin with an intracellular second messenger signaling cascade. This demonstrates that x-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether x-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing channelrhodopsin-2, both in cell culture and acute hippocampal slices. Importantly, x-ray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents in both systems, indicating activation of channelrhodopsin-2 and excitation of neurons.Significance.Together, our results show that x-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and x-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.


Asunto(s)
Cerio , Optogenética , Animales , Estudios de Factibilidad , Células HEK293 , Humanos , Ratones , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...