Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771855

RESUMEN

Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.


Asunto(s)
Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , Bovinos/genética , Animales , Italia , Femenino , Cruzamiento , Genotipo , Fenotipo
2.
Foods ; 12(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38002189

RESUMEN

The increasing number of food frauds, mainly targeting high quality products, is a rising concern among producers and authorities appointed to food controls. Therefore, the development or implementation of methods to reveal frauds is desired. The genetic traceability of traditional or high-quality dairy products (i.e., products of protected designation of origin, PDO) represents a challenging issue due to the technical problems that arise. The aim of the study was to set up a genetic tool for the origin traceability of dairy products. We investigated the use of Short Tandem Repeats (STRs) to assign milk and cheese to the corresponding producer. Two farms were included in the study, and the blood of the cows, bulk milk, and derived cheese were sampled monthly for one year. Twenty STRs were selected and Polymerase Chain Reactions for each locus were carried out. The results showed that bulk milk and derived cheese express an STR profile composed of a subset of STRs of the lactating animals. A bioinformatics tool was used for the exclusion analysis. The study allowed the identification of a panel of 20 markers useful for the traceability of milk and cheeses, and its effectiveness in the traceability of dairy products obtained from small producers was demonstrated.

3.
Animals (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835678

RESUMEN

Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.

4.
Anim Genet ; 54(3): 239-253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36737525

RESUMEN

We used genome-wide SNP data from 18 local cattle breeds from six countries of the Alpine region to characterize population structure and identify genomic regions underlying positive selection. The geographically close breeds Evolèner, Eringer, Valdostana Pezzata Nera, and Valdostana Castana were found to differ from all other Alpine breeds. In addition, three breeds, Simmental, and Original Braunvieh from Switzerland and Pinzgauer from Austria built three separate clusters. Of the 18 breeds studied, the intra-alpine Swiss breed Evolèner had the highest average inbreeding based on runs of homozygosity (FROH ) and the highest average genomic relationship within the breed. In contrast, Slovenian Cika cattle had the lowest average genomic inbreeding and the lowest average genomic relationship within the breed. We found selection signatures on chromosome 6 near known genes such as KIT and LCORL explaining variation in coat color and body size in cattle. The most prominent selection signatures were similar regardless of marker density and the breeds in the data set. In addition, using available high-density SNP data from 14 of the breeds we identified 47 genome regions as ROH islands. The proportion of homozygous animals was higher in all studied animals of local breeds than in Holstein and Brown Swiss cattle, the two most important commercial breeds in the Alpine region. We report ROH islands near genes related to thermoregulation, coat color, production, and stature. The results of this study serve as a basis for the search for causal variants underlying adaptation to the alpine environment and other specific characteristics selected during the evolution of local Alpine cattle breeds.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Bovinos , Animales , Genotipo , Endogamia , Homocigoto , Genómica/métodos
5.
Genes (Basel) ; 12(9)2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34573324

RESUMEN

Italian autochthonous turkey breeds are an important reservoir of genetic biodiversity that should be maintained with an in vivo approach. The aim of this study, part of the TuBAvI national project on biodiversity, was to use run of homozygosity (ROH), together with others statistical approaches (e.g., Wright's F-statistics, principal component analysis, ADMIXTURE analysis), to investigate the genomic diversity in several heritage turkey breeds. We performed a genome-wide characterization of ROH-rich regions in seven autochthonous turkey breeds, i.e., Brianzolo (Brzl), Bronzato Comune Italiano (BrCI), Bronzato dei Colli Euganei (CoEu), Parma e Piacenza (PrPc), Nero d'Italia (NeIt), Ermellinato di Rovigo (ErRo) and Romagnolo (Roma). ROHs were detected based on a 650K SNP genotyping. ROH_islands were identified as homozygous ROH regions shared by at least 75% of birds (within breed). Annotation of genes was performed with DAVID. The admixture analyses revealed that six breeds are unique populations while the Roma breed consists in an admixture of founder populations. Effective population size estimated on genomic data shows a numeric contraction. ROH_islands harbour genes that may be interesting for target selection in commercial populations also. Among them the PTGS2 and PLA2G4A genes on chr10 were related to reproduction efficiency. This is the first study mapping genetic variation in autochthonous turkey populations. Breeds were genetically different among them, with the Roma breed proving to be a mixture of the other breeds. The ROH_islands identified harboured genes peculiar to the selection that occurred in heritage breeds. Finally, this study releases previously undisclosed information on existing genetic variation in the turkey species.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Reproducción/genética , Pavos/genética , Animales , Biodiversidad , Femenino , Genómica , Homocigoto , Italia , Masculino , Densidad de Población , Selección Genética
7.
Genome Biol Evol ; 13(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34009300

RESUMEN

Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300-5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.


Asunto(s)
Domesticación , Galliformes/genética , Genoma , Filogenia , Animales , Variación Genética , Masculino , Filogeografía , Selección Genética
8.
BMC Genomics ; 22(1): 305, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902439

RESUMEN

BACKGROUND: In Iran, river buffalo is of great importance. It plays an important role in the economy of the Country, because its adaptation to harsh climate conditions and long productive lifespan permitting its farming across the Country and to convert low-quality feed into valuable milk. The genetic variability in Iranian buffalo breeds have been recently studied using SNPs genotyping data, but a whole genome Copy Number Variants (CNVs) mapping was not available. The aim of this study was to perform a genome wide CNV scan in 361 buffaloes of the three Iranian river breeds (Azeri, Khuzestani and Mazandarani) through the analysis of data obtained using the Axiom® Buffalo Genotyping Array 90 K. RESULTS: CNVs detection resulted in a total of 9550 CNVs and 302 CNVRs identified in at least 5% of samples within breed, covering around 1.97% of the buffalo genome. and A total of 22 CNVRs were identified in all breeds and a different proportion of regions were in common among the three populations. Within the more represented CNVRs (n = 302) mapped a total of 409 buffalo genes, some of which resulted associated with morphological, healthy, milk, meat and reproductive traits, according to Animal Genome Cattle database. CONCLUSIONS: This work provides a step forward in the interpretation of genomic variation within and among the buffalo populations, releasing a first map of CNVs and providing insights about their recent selection and adaptation to environment. The presence of the set of genes and QTL traits harbored in the CNVRs could be possibly linked with the buffalo's natural adaptive history together to a recent selection for milk used as primary food source from this species.


Asunto(s)
Búfalos , Variaciones en el Número de Copia de ADN , Animales , Búfalos/genética , Bovinos , Genoma , Irán , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Animals (Basel) ; 10(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322839

RESUMEN

The Aosta Red Pied (Valdostana Pezzata Rossa (VRP)), the Aosta Black Pied (Valdostana Pezzata Nera (VBP)) and the Aosta Chestnut (Valdostana Castana (CAS)) are dual-purpose cattle breeds (meat and milk), very well adapted to the harsh environmental conditions of alpine territories: their farming is in fact characterized by summer pasture at very high altitude. A total of 728 individuals were genotyped with the GeenSeek Genomic Profiler® (GGP) Bovine 150K Illumina SNP chip as a part of the DUALBREEDING-PSRN Italian-funded research project. The genetic diversity among populations showed that the three breeds are distinct populations based on the FST values, ADMIXTURE and Principal Component Analysis (PCA) results. Runs of Homozygosity (ROH) were obtained for the three populations to disclose recent autozygosity. The genomic inbreeding based on the ROH was calculated and coupled with information derived from the F (inbreeding coefficient) and FST parameters. The mean FROH values were low: CAS = 0.06, VBP = 0.05 and VRP = 0.07, while the average F values were -0.003, -0.01 and -0.003, respectively. The annotation and enrichment analysis, performed in the identified most frequent ROH (TOP_ROH), showed genes that can be linked to the resilience capacity of these populations to harsh environmental farming conditions, and to the peculiar characteristics searched for by farmers in each breed.

10.
Animals (Basel) ; 10(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192001

RESUMEN

The German Shorthaired Pointer (GSHP) is a breed worldwide known for its hunting versatility. Dogs of this breed are appreciated as valuable companions, effective trackers, field trailers and obedience athletes. The aim of the present work is to describe the genomic architecture of the GSHP breed and to analyze inbreeding levels under a genomic and a genealogic perspective. A total of 34 samples were collected (24 Italian, 10 USA), and the genomic and pedigree coefficients of inbreeding have been calculated. A total of 3183 runs of homozygosity (ROH) across all 34 dogs have been identified. The minimum and maximum number of Single Nucleotide Polymorphisms (SNPs) defining all ROH are 40 and 3060. The mean number of ROH for the sample was 93.6. ROH were found on all chromosomes. A total of 854 SNPs (TOP_SNPs) defined 11 ROH island regions (TOP_ROH), in which some gene already associated with behavioral and morphological canine traits was annotated. The proportion of averaged observed homozygotes estimated on total number of SNPs was 0.70. The genomic inbreeding coefficient based on ROH was 0.17. The mean inbreeding based on genealogical information resulted 0.023. The results describe a low inbred population with quite a good level of genetic variability.

11.
Reprod Domest Anim ; 55 Suppl 2: 4-9, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31913541

RESUMEN

Pedigree dogs and cats are bred aiming to conform breed standards with very poor consideration for breeding stock fertility. At the same time, the genetic asset underlining reproductive traits could be effectively analysed like in other species under selection. The definition of selection targets is very important in breeding protocols determination. The aim of the present work is to present an overview of the different correlations between reproduction and genetics, starting from selection procedure and inbreeding coefficient moving to genomic and the application of SNPs and GWAS on population study and identification of genes involved in phenotypical variation of reproductive traits in dogs. Particular relevance has been given to the concept of inbreeding which effects on canine reproduction have been presented. The use of genomic information in inbreeding coefficient calculation can be considered an improved effective procedure in the evaluation of the genetic variability loss in canine population and its negative effects on reproductive traits.


Asunto(s)
Cruzamiento/métodos , Perros/genética , Fertilidad/genética , Animales , Peso al Nacer , Cesárea/veterinaria , Femenino , Endogamia , Masculino , Reproducción/genética , Selección Genética
12.
Front Genet ; 10: 982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737031

RESUMEN

This study aims at investigating genomic diversity of several turkey populations using Copy Number Variants (CNVs). A total of 115 individuals from six Italian breeds (Colle Euganei, Bronzato Comune Italiano, Parma e Piacenza, Brianzolo, Nero d'Italia, and Ermellinato di Rovigo), seven Narragansett, 38 commercial hybrids, and 30 Mexican turkeys, were genotyped with the Affymetrix 600K single nucleotide polymorphism (SNP) turkey array. The CNV calling was performed with the Hidden Markov Model of PennCNV software and with the Copy Number Analysis Module of SVS 8.4 by Golden Helix®. CNV were summarized into CNV regions (CNVRs) at population level using BEDTools. Variability among populations has been addressed by hierarchical clustering (pvclust R package) and by principal component analysis (PCA). A total of 2,987 CNVs were identified covering 4.65% of the autosomes of the Turkey_5.0/melGal5 assembly. The CNVRs identified in at least two individuals were 362-189 gains, 116 losses, and 57 complexes. Among these regions the 51% contain annotated genes. This study is the first CNV mapping of turkey population using 600K chip. CNVs clustered the individuals according to population and their geographical origin. CNVs are known to be indicators also of adaptation, as some researches in different species are suggesting.

13.
Animals (Basel) ; 9(9)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480266

RESUMEN

Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, genetic studies, like genome-wide association studies (GWAS) have greatly improved the investigation of complex diseases identifying thousands of disease-associated genomic variants. Here, we present evidence of genetic variants associated with resistance to TB in Mexican dairy cattle using a case-control approach with a selective DNA pooling experimental design. A total of 154 QTLRs (quantitative trait loci regions) at 10% PFP (proportion of false positives), 42 at 5% PFP and 5 at 1% PFP have been identified, which harbored 172 annotated genes. On BTA13, five new QTLRs were identified in the MACROD2 and KIF16B genes, supporting their involvement in resistance to bTB. Six QTLRs harbor seven annotated genes that have been previously reported as involved in immune response against Mycobacterium spp: BTA (Bos taurus autosome) 1 (CD80), BTA3 (CTSS), BTA 3 (FCGR1A), BTA 23 (HFE), BTA 25 (IL21R), and BTA 29 (ANO9 and SIGIRR). We identified novel QTLRs harboring genes involved in Mycobacterium spp. immune response. This is a first screening for resistance to TB infection on Mexican dairy cattle based on a dense SNP (Single Nucleotide Polymorphism) chip.

14.
PLoS One ; 14(4): e0215204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31013280

RESUMEN

Copy number variation (CNV) is a major source of genomic structural variation. The aim of this study was to detect genomic CNV regions (CNVR) in Valle del Belice dairy sheep population and to identify those affecting milk production traits. The GO analysis identified possible candidate genes and pathways related to the selected traits. We identified CNVs in 416 individuals genotyped using the Illumina OvineSNP50 BeadChip array. The CNV association using a correlation-trend test model was examined with the Golden Helix SVS 8.7.0 tool. Significant CNVs were detected when their adjusted p-value was <0.01 after false discovery rate (FDR) correction. We identified 7,208 CNVs, which gave 365 CNVRs after aggregating overlapping CNVs. Thirty-one CNVRs were significantly associated with one or more traits included in the analysis. All CNVRs, except those on OAR19, overlapped with quantitative trait loci (QTL), even if they were not directly related to the traits of interest. A total of 222 genes were annotated within the significantly associated CNVRs, most of which played important roles in biological processes related to milk production and health-related traits. Identification of the genes in the CNVRs associated with the studied traits will provide the basis for further investigation of their role in the metabolic pathways related to milk production and health traits.


Asunto(s)
Variaciones en el Número de Copia de ADN , Lactancia/genética , Sitios de Carácter Cuantitativo , Ovinos/genética , Animales , Mapeo Cromosómico , Industria Lechera , Femenino , Estudio de Asociación del Genoma Completo , Genotipo
15.
PeerJ ; 6: e4889, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202639

RESUMEN

BACKGROUND: The Akhal-Teke horse (AKH) is native of the modern Turkmenistan area. It was introduced in Italy from 1991 to 2000 mainly as an endurance horse. This paper characterizes the genetic variability of the whole Italian AKH horse population and evaluates their inbreeding level by analyzing microsatellite markers and mitochondrial D-Loop sequences. METHODS: Seventeen microsatellite marker loci were genotyped on 95 DNA samples from almost all the AKH horses bred in Italy in the last 20 years. Standard genetic variability measures (Ho, He, FIS) were compared against the same variables published on other eight AKH populations. In addition, 397 bp of mtDNA D-loop region were sequenced on a sub-group of 22 unrelated AKH out of the 95 sampled ones, and on 11 unrelated Arab horses. The haplotypes identified in the Italian population were aligned to sequences of AKH (56), Arab (five), Caspian Pony (13), Przewalskii (two) and Barb (15) horses available in GenBank. The Median Joining Network (MJN), Principal Component Analysis (PCA) and Neighbor-joining (NJ) tree were calculated on the total 126 sequences. RESULTS: Nucleic markers showed a high degree of polymorphism (Ho = 0.642; He = 0.649) and a low inbreeding level (FIS = 0.016) in Italian horses, compared to other AKH populations (ranged from -0.103 AKH from Estonia to 0.114 AKH from Czech Republic). High variability was also recorded in the D-Loop region. 11 haplotypes were identified with haplotype diversity (hd), nucleotide diversity (π) and average number of nucleotide differences (k) of 0.938, 0.021 and 6.448, respectively. When all the 126 D-Loop sequences were compared, 51 haplotypes were found, and four were here found only in the Italian AKH horses. The 51 haplotypes were conformed to eight recognized mtDNA haplogroups (A, C, F, G, L, M, P and Q) and confirmed by MJN analysis, Italian horses being assigned to five haplogroups (A, C, G, L and M). Using a PCA approach to the same data, the total haplotypes were grouped into two clusters including A+C+M+P and G+F haplogroups, while L and Q haplogroups remained ungrouped. Finally, the NJ algorithm effectively discretizes only the L haplogroup. All the above data univocally indicate good genetic variability and accurate management of the Akhal-Teke population in Italy.

16.
PLoS One ; 13(9): e0204669, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261013

RESUMEN

Copy number variants (CNVs) are an important source of genomic structural variation, recognized to influence phenotypic variation in many species. Many studies have focused on identifying CNVs within and between human and livestock populations alike, but only few have explored population-genetic properties in cattle based on CNVs derived from a high-density SNP array. We report a high-resolution CNV scan using Illumina's 777k BovineHD Beadchip for Valdostana Red Pied (VRP), an autochthonous Italian dual-purpose cattle population reared in the Alps that did not undergo strong selection for production traits. After stringent quality control and filtering, CNVs were called across 108 bulls using the PennCNV software. A total of 6,784 CNVs were identified, summarized to 1,723 CNV regions (CNVRs) on 29 autosomes covering a total of ~59 Mb of the UMD3.1 assembly. Among the mapped CNVRs, there were 812 losses, 832 gains and 79 complexes. We subsequently performed a comparison of CNVs detected in the VRP and those available from published studies in the Italian Brown Swiss (IBS) and Mexican Holstein (HOL). A total of 171 CNVRs were common to all three breeds. Between VRP and IBS, 474 regions overlapped, while only 313 overlapped between VRP and HOL, indicating a more similar genetic background among populations with common origins, i.e. the Alps. The principal component, clustering and admixture analyses showed a clear separation of the three breeds into three distinct clusters. In order to describe the distribution of CNVs within and among breeds we used the pair VST statistic, considering only the CNVRs shared to more than 5 individuals (within breed). We identified unique and highly differentiated CNVs (n = 33), some of which could be due to specific breed selection and adaptation. Genes and QTL within these regions were characterized.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN , Animales , Cruzamiento , Bovinos/clasificación , Mapeo Cromosómico/veterinaria , Industria Lechera , Genética de Población/estadística & datos numéricos , Italia , Masculino , México , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Sitios de Carácter Cuantitativo , Programas Informáticos , Especificidad de la Especie
17.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940848

RESUMEN

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Asunto(s)
Animales Domésticos/genética , Conservación de los Recursos Naturales/métodos , Variación Genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Bovinos , Evolución Molecular , Genética de Población , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Densidad de Población
18.
Nat Genet ; 50(3): 362-367, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459679

RESUMEN

Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.


Asunto(s)
Tamaño Corporal/genética , Bovinos/genética , Secuencia Conservada , Estudio de Asociación del Genoma Completo , Mamíferos/genética , Animales , Estatura/genética , Bovinos/clasificación , Estudios de Asociación Genética/veterinaria , Variación Genética , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Estudio de Asociación del Genoma Completo/veterinaria , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(3): 409-418, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28278690

RESUMEN

Donkeys have played an important role in agricultural land practices and in human historical periods of recent past and, still today, are used as a working power in several world areas. The objective of this study was to identify genetic variability in six Italian donkey breeds using mtDNA D-loop. Fifteen haplotypes, grouped in three haplogroups, were identified. The genetic indices were informative and showed a high population genetic variability. The results of AMOVA analyses based on geographic structuring of Italian populations highlighted that the majority of the observed variance is due to differences among samples within breeds. Comparison among Italian haplotypes and mtDNA D-loop sequences belonging to European domestic and Ethiopian donkeys and wild asses, clearly define two clades referred to Nubian lineage. The results can be useful to complement safeguard planes for donkey breeds that are considered to extinction endangered.


Asunto(s)
ADN Mitocondrial/genética , Equidae/clasificación , Variación Genética , Análisis de Secuencia de ADN/métodos , Animales , Cruzamiento , ADN Mitocondrial/química , Equidae/genética , Etiopía , Europa (Continente) , Genética de Población , Haplotipos , Italia , Filogenia , Filogeografía
20.
J Dairy Sci ; 101(2): 1292-1296, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29153527

RESUMEN

The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Genoma , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Femenino , Genómica/métodos , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...