Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064144

RESUMEN

Delivering protein therapeutics specifically into target cells and tissues is a promising avenue in medicine. Advancing this process will significantly enhance the efficiency of the designed drugs. In this regard, natural membrane-based systems are of particular interest. Extracellular vesicles (EVs), being the bilayer lipid particles secreted by almost all types of cells, have several principal advantages: biocompatibility, carrier stability, and blood-brain barrier penetrability, which make them a perspective tool for protein therapeutic delivery. Here, we evaluate the engineered genetically encoded EVs produced by a human cell line, which allow efficient cargo loading. In the devised system, the protein of interest is captured by self-assembling structures, i.e., "enveloped protein nanocages" (EPN). In their turn, EPNs are encapsulated in fusogenic EVs by the overexpression of vesicular stomatitis virus G protein (VSV-G). The proteomic profiles of different engineered EVs were determined for a comprehensive evaluation of their therapeutic potential. EVs loading mediated by bio-safe Fos-Jun heterodimerization demonstrates an increased efficacy of active cargo loading and delivery into target cells. Our results emphasize the outstanding technological and biomedical potential of the engineered EV systems, including their application in adoptive cell transfer and targeted cell reprogramming.

2.
Biomed Mater ; 14(3): 034102, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30726780

RESUMEN

Silk fibroin is a promising biomaterial for tissue engineering due to its valuable mechanical and biological properties. However, being a natural product and a protein, it lacks the processability and uniform quality of an advanced synthetic material. Here we propose a way to overcome this contradiction using novel fibroin photocrosslinkable derivative (FBMA). FBMA was synthesized by methacrylation of native fibroin nucleophilic side groups. It was dissolved in either formic acid (FA) or hexafluoroisopropanol (HFIP), and the obtained solutions were photocrosslinked into hydrogel scaffolds of various structural forms including films, micropatterns, pads and macroporous sponges. UV-exposition of dry FBMA films through a photomask created complex microscaled patterns of the polymer. The nature of the solvent affected the properties of resulting hydrogels. When HFIP was used as the solvent, the resulting hydrogels had a storage modulus ∼4 times higher than that of hydrogels fabricated using FA and ∼20 times higher compared to the reference hydrogel obtained from pristine fibroin. Both FBMA-based hydrogels were biocompatible and supported fibroblast adhesion and growth in vitro. Cells cultivated on FBMA scaffolds produced with HFIP exhibited more spread phenotype at 4 and 24 h of cultivation, consistent with increased stiffness of the hydrogel. Hence, FBMA is an attractive material for fabrication of micropatterned scaffolds of centimeter-scale size with minutely tunable physico-chemical properties via convenient and reproducible technological processes, applicable for rapid prototyping.


Asunto(s)
Fibroínas/química , Hidrogeles/química , Andamios del Tejido , Células 3T3 , Actinas/química , Animales , Materiales Biocompatibles/química , Supervivencia Celular , Reactivos de Enlaces Cruzados/química , Citoesqueleto/química , Formiatos/química , Metacrilatos/química , Ratones , Microscopía de Fuerza Atómica , Fenotipo , Fotoquímica , Polímeros/química , Propanoles/química , Reología , Seda/química , Propiedades de Superficie , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA