Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 248: 118218, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266892

RESUMEN

The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Bentonita/química , Adsorción , Contaminantes Químicos del Agua/análisis , Agua , Nanocompuestos/química , Cinética , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 349: 140861, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056713

RESUMEN

Adsorption is one of the most promising wastewater treatment methods due to its simplicity and efficacy at ambient temperature and pressure. However, the technical and economic feasibility of this process largely depends on the performance of the utilized adsorbents. In this study, a promising adsorbent made of polyethyleneimine, graphene oxide (GO), bentonite, and MgFeAl-layered triple hydroxide (MgFeAl-LTH) has been synthesized and characterized. The results revealed that the synthesized nanocomposite (abbreviated as PGB-LTH) possesses good porosity and crystallinity. The adsorption performance of the PGB-LTH nanocomposite towards two harmful water pollutants (i.e., methyl orange (MO) and crystal violet (CV)) was investigated, and the results revealed that the nanocomposite outperforms its parental materials (i.e., GO, bentonite, and MgFeAl-LTH). The maximum adsorption capacity (qmax) of MO and CV onto the nanocomposite could reach 1666.7 and 1250.0 mg/g, respectively, as predicted using the Langmuir adsorption isotherm. Additionally, the PGB-LTH nanocomposite is highly reusable with an insignificant decline in performance upon repetitive use. In terms of thermodynamics, MO adsorption onto the nanocomposite is exothermic while CV adsorption is endothermic despite that both dyes adsorb spontaneously as revealed by the negative values of the Gibbs free energy change at all the examined temperatures. The generated adsorption data were utilized for constructing and assessing ensemble meta-machine learning techniques aimed at cost-effective simulation and prediction of the proposed adsorption method. Bagging and boosting methods were developed and evaluated intensively using the obtained adsorption data. The Extra Trees model achieved promising results as evidenced by the high correlation coefficient of 99% as well as low computed RMSE and MAE errors of 11.42 and 5.11, respectively, during the testing phase. These results demonstrate the model strong capability to effectively simulate and predict the adsorption process in question.


Asunto(s)
Grafito , Nanocompuestos , Contaminantes Químicos del Agua , Colorantes/química , Arcilla , Adsorción , Grafito/química , Bentonita/química , Agua/química , Cationes , Aprendizaje Automático , Nanocompuestos/química , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
3.
Nanomaterials (Basel) ; 13(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570470

RESUMEN

Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...