Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Gynecol Obstet ; 309(5): 2107-2114, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441601

RESUMEN

PURPOSE: To compare the DNA damage in granulosa cells (GCs) of women undergoing ovarian-stimulated cycles with four widely used recombinant human follicle-stimulating hormones (rhFSH) in in vitro fertilization (IVF) protocols (Corneumon®, Gonal-F®, Pergoveris® and Puregon®). METHODS: A randomized trial was carried out at a Mexican hospital. GCs were isolated from 18 women with infertility undergoing assisted reproductive techniques (ART). Four controlled ovarian stimulation (COS) protocols including Corneumon®, Gonal-F®, Pergoveris® or Puregon® were used. GCs DNA damage was assessed by the Comet assay. Two parameters were measured: comet tail length (CTL), and Olive tail moment (OTM, the percentage of DNA in the tail multiplied by the distance between the center of the tail and head). RESULTS: Use of the different hrFSH in COS caused variable and statistically significant levels of DNA damage in GCs of infertile women. CTL was similar in the Corneumon® and Pergoveris® groups (mean values of 48.73 and 55.18, respectively) and Corneumon® CTL was significantly lower compared to the Gonal-F® and Puregon® groups (mean values of 61.98 and 91.17, respectively). Mean OTM values were significantly lower in Corneumon® and Pergoveris® groups, compared to Gonal-F® and Puregon® groups (25.59, 27.35, 34.76, and 47.27, respectively). CONCLUSION: Use of Corneumon® and Pergoveris® in COS caused statistically significantly lower levels of DNA damage in GCs of infertile women undergoing ART, which could potentially correlate with better reproductive outcomes.


Asunto(s)
Infertilidad Femenina , Hormona Luteinizante , Femenino , Humanos , Daño del ADN , Combinación de Medicamentos , Fertilización In Vitro , Hormona Folículo Estimulante , Hormona Folículo Estimulante Humana , Células de la Granulosa , Infertilidad Femenina/terapia , Inducción de la Ovulación/métodos , Proteínas Recombinantes
2.
Syst Biol Reprod Med ; 69(3): 234-244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36848400

RESUMEN

Multiple effects of stress on health have been reported; however, reproductive alterations in oocytes and cumulus cells have not been fully described. In females, chronic stress has been shown to produce alterations in the estrous cycle, to decrease oocyte in vivo maturation, and to increase the percentage of abnormal oocytes. The aim of this study was to evaluate whether the oocytes from chronically stressed female rats could recover and mature in vitro by providing them with all the necessary culture conditions, as well as to evaluate the functionality of the GAP junctions, and the viability and DNA integrity of the cumulus cells, which are crucial for the complete maturation and development of the oocyte. For this, rats were stressed daily by cold water immersion (15 °C) during 15 min for 30 consecutive days. Corticosterone serum levels in rats increased as an indicator of stress. Chronic stress decreased the percentage of in vitro matured oocytes because the cumulus cells presented irreparable damage to their DNA that led to their death, being unable to establish bidirectional communication with the oocyte for its meiotic resumption through the GAP junctions, which were also damaged. These findings could partially explain an association between stress and infertility.


Asunto(s)
Meiosis , Oocitos , Ratas , Femenino , Animales , Oogénesis , Células del Cúmulo , ADN , Fertilidad
3.
Porcine Health Manag ; 7(1): 56, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663451

RESUMEN

BACKGROUND: The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. RESULTS: The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. CONCLUSION: This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.

4.
Cells ; 9(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183150

RESUMEN

(1) Aim: In the present paper we analyzed the transcriptome of CSCs (Cancer Stem Cells), in order to find defining molecular processes of breast cancer. (2) Methods: We performed RNA-Seq from CSCs isolated from the basal cell line MDA-MB-468. Enriched processes and networks were studied using the IPA (Ingenuity Pathway Analysis) tool. Validation was performed with qRT-PCR and the analysis of relevant genes was evaluated by overexpression, flow cytometry and in vivo zebrafish studies. Finally, the clinical relevance of these results was assessed using reported cohorts. (3) Results: We found that CSCs presented marked differences from the non-CSCs, including enrichment in transduction cascades related to stemness, cellular growth, proliferation and apoptosis. Interestingly, CSCs overexpressed a module of co-regulated Chromosomal Passenger Proteins including BIRC5 (survivin), INCENP and AURKB. Overexpression of BIRC5 increased the number of CSCs, as assessed by in vitro and in vivo zebrafish xenotransplant analyses. Analysis of previously published cohorts showed that this co-regulated module was not only overexpressed in basal breast tumors but also associated with relapse-free and overall survival in these patients. (4) Conclusions: These results underline the importance of Cancer Stem Cells in breast cancer progression and point toward the possible use of chromosomal passenger proteins as prognostic factors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Apoptosis , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Neoplásicas/patología , Pronóstico , Survivin/genética , Survivin/metabolismo , Pez Cebra
5.
Environ Toxicol ; 34(1): 92-98, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30277307

RESUMEN

Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acid family of compounds. Due to the presence of strong carbon-fluorine bonds, it is practically nonbiodegradable and highly persistent in the environment. PFOA has been detected in the follicular fluid of women, and positively associated with reduced fecundability and infertility. However, there are no reports concerning the experimental evaluation of PFOA on oocyte toxicity in mammals. The aim of the present study was to determine if PFOA is able to induce oxidative stress in fetal ovaries and cause apoptosis in oocytes in vitro. In addition, since inhibition of the gap junction intercellular communication (GJIC) by PFOA has been demonstrated in liver cells in vivo and in vitro, the effect of PFOA on the GJIC between the oocyte and its supportive cumulus cells was studied. Results show that PFOA induced oocyte apoptosis and necrosis in vitro (medium lethal concentration, LC50 = 112.8 µM), as evaluated with Annexin-V-Alexa 508 in combination with BOBO-1 staining. Reactive oxygen species (ROS) levels, as assessed by DCFH-DA, increased significantly in fetal ovaries exposed to » LC50 (28.2 µM, a noncytotoxic and relevant occupational exposure concentration) and LC50 PFOA ex vivo. This perfluorinated compound also caused the blockage of GJIC in cumulus cells-oocyte complexes (COCs) obtained from female mice exposed in vivo, as evaluated by calcein transfer from cumulus cells to the oocyte. The ability of PFOA of disrupting the GJIC in COCs, generating ROS in the fetal ovary and causing apoptosis and necrosis in mammal's oocytes, might account for the reported association between increasing maternal plasma concentrations of PFOA with reduced fertility in women.


Asunto(s)
Apoptosis/efectos de los fármacos , Caprilatos/farmacología , Comunicación Celular/efectos de los fármacos , Fluorocarburos/farmacología , Uniones Comunicantes/efectos de los fármacos , Ovario/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Femenino , Fluoresceínas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Ovario/fisiología
6.
Cancer Invest ; 34(3): 155-66, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963048

RESUMEN

We used both in vitro cultures of neuroblastoma cell lines and nude-mice xenotransplants to explore the effects of co-administration of cisplatin and probenecid. Probenecid sensitized neuroblastoma cells, including tumor cells with stem features, to the effects of cisplatin, both in vitro and in vivo. This effect was mediated by an increase in the apoptotic cell death and a concomitant decrease in cell proliferation. This effect is accompanied by modulation of the mRNA and protein of the drug efflux transporters MDR1, MRP2, and BCRP. The co-administration of probenecid with cisplatin should be explored as a possible therapeutic strategy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal , Femenino , Expresión Génica , Humanos , Ratones Desnudos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/fisiología , Neuroblastoma/patología , Probenecid/administración & dosificación , Células de Población Lateral/efectos de los fármacos , Células de Población Lateral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...