Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206194

RESUMEN

Polymer nanoparticles are a promising approach for cancer treatment and detection, due to their biocompatibility, biodegradability, targeting capabilities, capacity for drug loading and long blood circulation time. This study aims to evaluate the impact of poly (styrene-acrylic acid) latex particles on colorectal and cervical cancer cells for anti-tumor efficiency. Latex particles were synthesized by a surfactant-free radical emulsion polymerization process and the obtained polymer particles were characterized in terms of size, size distribution, morphology using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and electrokinetic property (i.e., zeta potential). Human colorectal and cervical cancer, and normal cell lines, were then treated with different concentrations of poly (styrene-acrylic acid) latex particles. The cell morphology changes were pointed out using an optical microscope and the nanoparticles' (NPs) cell cytotoxicity was evaluated using MTT assay. The obtained results showed that poly (styrene-acrylic acid) latex particles are effective against colorectal and cervical cancer cells if treated with an appropriate particle concentration for 48 h. In addition, it showed that normal cells are the least affected by this treatment. This indicates that these NPs are safe as a drug delivery carrier when used at a low concentration.

2.
Polymers (Basel) ; 12(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650474

RESUMEN

Tamoxifen (TAM) is a hormonal drug and is mainly used as an anti-estrogen in breast cancer patients. TAM binds to estrogen receptors (ERs), resulting in inhibition of estrogen signaling pathways and thus, a downregulation of cell proliferation. Cancer cells with negative or low ER expression will not uptake TAM and will show low response. Poly (methyl methacrylate) (PMMA) nanoparticles were prepared using surfactant-free emulsion polymerization, then were loaded with Nile red (NR), which resulted in PMMA-NR. To enhance TAM delivery to cervical cancer cells (HELA), which is considered ER-negative, we loaded TAM and polymethyl methacrylate nanoparticles-Nile-red into silica (PMMA-NR-Si-TAM). The uptake and intracellular distribution were visualized by confocal laser scanning microscopy, and the in vitro cytotoxic activity was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay using HELA and non-tumorigenic cell line HFF-1. The sensitivity of HELA (LC50: 207.31 µg/mL) and HFF-1 (LC50: 234.08 µg/mL) to free TAM was very low. However, after the encapsulation of TAM with PMMA-NR, the sensitivity significantly increased HELA (LC50: 71.83 µg/mL) and HFF-1 (LC50: 37.36 µg/mL). This indicates that TAM can be used for the treatment of ER-negative cervical cancer once conjugated to PMMA-NR nanoparticles. In addition, the PMMA-NR formulation appears to be highly suitable for cancer imaging and drug delivery.

3.
AAPS PharmSciTech ; 20(7): 297, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444661

RESUMEN

Miconazole nitrate (MZ) is a BCS class II antifungal poorly water-soluble drug with limited dissolution properties and gastrointestinal side effects. Self-nanoemulsifying delivery system-based gel of MZ can improve both solubility and oral mucosal absorption with enhanced antifungal activity. The study aims to formulate MZ self-nanoemulsion (MZ-NE) and combine it within hyaluronic acid-based gel. MZ solubility in various oils, surfactants, and cosurfactant used in NE formulations were evaluated. Mixture design was implemented to optimize the levels of NE components as a formulation variable to study their effects on the mean globule size and antifungal inhibition zones. Further, the optimized MZ-NE was loaded into a hyaluronic acid gel base. Rheological behavior of the prepared gel was assessed. Ex vivo permeability of optimized formulation across buccal mucous of sheep and inhibition against Candida albicans were examined. Mixture design was used to optimize the composition of MZ-NE formulation as 22, 67, and 10% for clove oil, Labrasol, and propylene glycol, respectively. The optimized formulation indicated globule size of 113 nm with 29 mm inhibition zone. Pseudoplastic flow with thixotropic behavior was observed, which is desirable for oral gels. The optimized formulation exhibited higher ex vivo skin permeability and enhanced antifungal activity by 1.85 and 2.179, respectively, compared to MZ-SNEDDS, and by 1.52 and 1.72 folds, respectively, compared to marketed gel. Optimized MZ-NE hyaluronic acid-based oral gel demonstrated better antifungal activity, indicating its potential in oral thrush pharmacotherapy.


Asunto(s)
Antifúngicos/administración & dosificación , Candidiasis Bucal/tratamiento farmacológico , Química Farmacéutica/métodos , Ácido Hialurónico/administración & dosificación , Miconazol/administración & dosificación , Nanocápsulas/administración & dosificación , Administración Oral , Animales , Antifúngicos/síntesis química , Antifúngicos/farmacocinética , Candidiasis Bucal/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Emulsiones/administración & dosificación , Emulsiones/síntesis química , Emulsiones/farmacocinética , Ácido Hialurónico/síntesis química , Ácido Hialurónico/farmacocinética , Hidrogeles/administración & dosificación , Hidrogeles/síntesis química , Hidrogeles/farmacocinética , Miconazol/síntesis química , Miconazol/farmacocinética , Nanocápsulas/química , Ovinos
4.
Artif Cells Nanomed Biotechnol ; 47(1): 3079-3086, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31352799

RESUMEN

The engineering of multifunctional therapeutics in an integrated single platform is demonstrated using three-dimensional SBA-16 (S-16). 10 wt% iron oxide nanoparticles (Fe) were loaded into the cage type of cubic pores through enforced adsorption technique. Fe/S-16 is then functionalized with amine-based silane (A), polyacrylic acid (P) and cisplatin (Cp). The physicochemical textural analysis showed the formation of nano metal oxide distributions at pore walls of S-16 with magnetization of 2.39 emu/g. S-16 based nanoformulations showed high percentage of Cp adsorption (90%) and percentage cumulative release (60%). in vitro study of Fe/S-16-A-Cp showed high toxicity against breast cancer cell line MCF-7 and normal cell line Human foreskin fibroblast (HFF-1) compared to Fe/S-16 indicating cisplatin profusion inside the cells than free cisplatin. While skin fibroblast seems to be resistant to Fe/S-16-AP-Cp with very high LC50 in compare to MCF-7. This indicates the unrelease of cisplatin in skin fibroblast after Fe/S-16-AP-Cp treatment due to effective encapsulation inside the cubic pores and core blockage due to pH-sensitive polyacrylic acid. Also, these treatments resulted in morphological changes in the cells such as DNA condensation and nuclear fragmentation.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Cisplatino/química , Cisplatino/farmacología , Imanes/química , Dióxido de Silicio/química , Resinas Acrílicas/química , Aminas/química , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Humanos , Células MCF-7 , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...