Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3335, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637555

RESUMEN

Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.


Asunto(s)
Neoplasias , Oncogenes , Humanos , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , Mutación , Neoplasias/genética
2.
Sci Adv ; 9(14): eade9997, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027465

RESUMEN

RNA editing, the endogenous modification of nucleic acids, is known to be altered in genes with important neurological function in schizophrenia (SCZ). However, the global profile and molecular functions of disease-associated RNA editing remain unclear. Here, we analyzed RNA editing in postmortem brains of four SCZ cohorts and uncovered a significant and reproducible trend of hypoediting in patients of European descent. We report a set of SCZ-associated editing sites via WGCNA analysis, shared across cohorts. Using massively parallel reporter assays and bioinformatic analyses, we observed that differential 3' untranslated region (3'UTR) editing sites affecting host gene expression were enriched for mitochondrial processes. Furthermore, we characterized the impact of two recoding sites in the mitofusin 1 (MFN1) gene and showed their functional relevance to mitochondrial fusion and cellular apoptosis. Our study reveals a global reduction of editing in SCZ and a compelling link between editing and mitochondrial function in the disease.


Asunto(s)
ARN , Esquizofrenia , Humanos , ARN/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Mitocondrias/genética
3.
iScience ; 25(8): 104836, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992085

RESUMEN

PODXL, a protein that is dysregulated in multiple cancers, plays an important role in promoting cancer metastasis. In this study, we report that RNA editing promotes the inclusion of a PODXL alternative exon. The resulting edited PODXL long isoform is more prone to protease digestion and has the strongest effects on reducing cell migration and cisplatin chemoresistance among the three PODXL isoforms (short, unedited long, and edited long isoforms). Importantly, the editing level of the PODXL recoding site and the inclusion level of the PODXL alternative exon are strongly associated with overall patient survival in Kidney Renal Clear Cell Carcinoma (KIRC). Supported by significant enrichment of exonic RNA editing sites in alternatively spliced exons, we hypothesize that exonic RNA editing sites may enhance proteomic diversity through alternative splicing, in addition to amino acid changes, a previously under-appreciated aspect of RNA editing function.

4.
Genome Res ; 31(3): 359-371, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33452016

RESUMEN

Alternative splicing is an RNA processing mechanism that affects most genes in human, contributing to disease mechanisms and phenotypic diversity. The regulation of splicing involves an intricate network of cis-regulatory elements and trans-acting factors. Due to their high sequence specificity, cis-regulation of splicing can be altered by genetic variants, significantly affecting splicing outcomes. Recently, multiple methods have been applied to understanding the regulatory effects of genetic variants on splicing. However, it is still challenging to go beyond apparent association to pinpoint functional variants. To fill in this gap, we utilized large-scale data sets of the Genotype-Tissue Expression (GTEx) project to study genetically modulated alternative splicing (GMAS) via identification of allele-specific splicing events. We demonstrate that GMAS events are shared across tissues and individuals more often than expected by chance, consistent with their genetically driven nature. Moreover, although the allelic bias of GMAS exons varies across samples, the degree of variation is similar across tissues versus individuals. Thus, genetic background drives the GMAS pattern to a similar degree as tissue-specific splicing mechanisms. Leveraging the genetically driven nature of GMAS, we developed a new method to predict functional splicing-altering variants, built upon a genotype-phenotype concordance model across samples. Complemented by experimental validations, this method predicted >1000 functional variants, many of which may alter RNA-protein interactions. Lastly, 72% of GMAS-associated SNPs were in linkage disequilibrium with GWAS-reported SNPs, and such association was enriched in tissues of relevance for specific traits/diseases. Our study enables a comprehensive view of genetically driven splicing variations in human tissues.


Asunto(s)
Alelos , Empalme Alternativo/genética , Variación Genética , Línea Celular , Exones , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética
5.
Epigenetics ; 16(9): 1000-1015, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33092484

RESUMEN

microRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene regulation. The presence of miRNAs in extracellular biofluids is increasingly recognized. However, most previous characterization of extracellular miRNAs focused on their overall expression levels. Alternative sequence isoforms and modifications of miRNAs were rarely considered in the extracellular space. Here, we developed a highly accurate bioinformatic method, called miNTA, to identify 3' non-templated additions (NTAs) of miRNAs using small RNA-sequencing data. Using miNTA, we conducted an in-depth analysis of miRNA 3' NTA profiles in 1047 extracellular RNA-sequencing data sets of 4 types of biofluids. This analysis identified hundreds of miRNAs with 3' uridylation or adenylation, with the former being more prevalent. Among these miRNAs, up to 53% (22%) had an average 3' uridylation (adenylation) level of at least 10% in a specific biofluid. Strikingly, we found that 3' uridylation levels enabled segregation of different types of biofluids, more effectively than overall miRNA expression levels. This observation suggests that 3' NTA levels possess fluid-specific information relatively robust to batch effects. In addition, we observed that extracellular miRNAs with 3' uridylations are enriched in processes related to angiogenesis, apoptosis, and inflammatory response, and this type of modification may stabilize base-pairing between miRNAs and their target genes. Together, our study provides a comprehensive landscape of miRNA NTAs in human biofluids, which paves way for further biomarker discoveries. The insights generated in our work built a foundation for future functional, mechanistic, and translational discoveries.


Asunto(s)
Líquidos Corporales , MicroARNs , Líquidos Corporales/metabolismo , Metilación de ADN , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Análisis de Secuencia de ARN
6.
Genome Biol ; 21(1): 268, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106178

RESUMEN

BACKGROUND: RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity and shaping various layers of gene regulation. Recent studies have revealed global shifts in editing levels across many cancer types, as well as a few specific mechanisms implicating individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, predominantly in noncoding regions, have unknown functional relevance. RESULTS: Here, we carry out integrative analysis of RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key paradigm for metastasis. We identify distinct editing patterns between epithelial and mesenchymal tumors in seven cancer types using TCGA data, an observation further supported by single-cell RNA sequencing data and ADAR perturbation experiments in cell culture. Through computational analyses and experimental validations, we show that differential editing sites between epithelial and mesenchymal phenotypes function by regulating mRNA abundance of their respective genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported by experimental validations. Consistent with the known roles of ILF3 in immune response, epithelial-mesenchymal differential editing sites are enriched in genes involved in immune and viral processes. The strongest target of editing-dependent ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral response. CONCLUSIONS: Our study reports widespread differences in RNA editing between epithelial and mesenchymal tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer and its relevance to cancer-related immune pathways.


Asunto(s)
Inmunidad , Neoplasias/genética , Neoplasias/inmunología , Edición de ARN , ARN Mensajero/genética , Células A549 , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Carcinogénesis , Línea Celular Tumoral , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas del Factor Nuclear 90/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
7.
Mol Neurobiol ; 57(4): 2115-2130, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31950355

RESUMEN

In Drosophila, transcriptional feedback loops contribute to intracellular timekeeping mechanisms responsible for daily rhythms. Pigment-dispersing factor (PDF) is the major neuropeptide produced by latero-ventral neurons (LNvs) that function as a central pacemaker for circadian locomotor activity rhythms. PDF synchronizes other clock neurons thereby playing an essential role in the maintenance and coordination of circadian locomotor rhythms. However, the underlying molecular mechanism of the LNvs-specific Pdf expression is not well understood. Here, using Pdf promoter-bashing experiment, we identified a cis-acting Pdf regulatory element (PRE) that is sufficient for driving Pdf expression in the LNvs. We have also identified a homeobox transcription factor, scarecrow (SCRO), as a direct binding factor to PRE. Furthermore, transgenic expression of scro in the clock neurons abolished Pdf expression and circadian locomotor activity rhythms, and such repressive function requires DNA-binding homeodomain, but none of the other conserved domains. scro is predominantly expressed in the optic lobe and various clusters of cells in other areas of the central nervous system. A homozygous scro-null mutant generated by CRIPSR is lethal during embryonic and early larval development, suggesting that scro plays a vital role during early development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/metabolismo , Neuropéptidos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Muerte Celular , Ritmo Circadiano , Drosophila melanogaster/citología , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/metabolismo , Actividad Motora , Neuronas/metabolismo , Unión Proteica
8.
Nat Commun ; 10(1): 1338, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902979

RESUMEN

Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into account crosslinking-induced sequence propensity and variations between replicated experiments. Using simulated and actual data, we show that BEAPR largely outperforms often-used count analysis methods. Importantly, BEAPR overcomes the inherent overdispersion problem of these methods. Complemented by experimental validations, we demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps to address the outstanding challenge of functional interpretation of GVs.


Asunto(s)
Alelos , Variación Genética , Proteínas de Unión al ARN/metabolismo , ARN/genética , Regiones no Traducidas 3'/genética , Secuencias de Aminoácidos , Secuencia de Bases , Biología Computacional , Simulación por Computador , Enfermedad/genética , Predisposición Genética a la Enfermedad , Células Hep G2 , Humanos , Células K562 , Polimorfismo de Nucleótido Simple/genética , Unión Proteica , Sitios de Carácter Cuantitativo/genética , ARN Helicasas/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transactivadores/metabolismo
9.
Commun Biol ; 2: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30652130

RESUMEN

Adenosine-to-inosine (A-to-I) editing, mediated by the ADAR enzymes, diversifies the transcriptome by altering RNA sequences. Recent studies reported global changes in RNA editing in disease and development. Such widespread editing variations necessitate an improved understanding of the regulatory mechanisms of RNA editing. Here, we study the roles of >200 RNA-binding proteins (RBPs) in mediating RNA editing in two human cell lines. Using RNA-sequencing and global protein-RNA binding data, we identify a number of RBPs as key regulators of A-to-I editing. These RBPs, such as TDP-43, DROSHA, NF45/90 and Ro60, mediate editing through various mechanisms including regulation of ADAR1 expression, interaction with ADAR1, and binding to Alu elements. We highlight that editing regulation by Ro60 is consistent with the global up-regulation of RNA editing in systemic lupus erythematosus. Additionally, most key editing regulators act in a cell type-specific manner. Together, our work provides insights for the regulatory mechanisms of RNA editing.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adenosina/genética , Elementos Alu , Autoantígenos/genética , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Inosina/genética , Células K562 , Lupus Eritematoso Sistémico/genética , ARN Citoplasmático Pequeño/genética , Ribonucleoproteínas/genética , Análisis de Secuencia de ARN , Transcripción Genética , Transfección
10.
Nat Neurosci ; 22(1): 25-36, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559470

RESUMEN

Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.


Asunto(s)
Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Edición de ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Trastorno Autístico/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Perfilación de la Expresión Génica , Humanos , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Genome Res ; 28(6): 812-823, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29724793

RESUMEN

In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites.


Asunto(s)
Regulación de la Expresión Génica/genética , Edición de ARN/genética , Precursores del ARN/genética , Empalme del ARN/genética , Adenosina/genética , Animales , Cromatina/genética , Exones/genética , Humanos , Inosina/genética , Mamíferos/genética , Conformación de Ácido Nucleico , Poliadenilación/genética
12.
Nucleic Acids Res ; 44(7): 3253-63, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26975654

RESUMEN

In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation.


Asunto(s)
Endorribonucleasas/metabolismo , División del ARN , ARN Pequeño no Traducido/metabolismo , Animales , Cerebelo/embriología , Cerebelo/enzimología , Células Madre Embrionarias/enzimología , Genómica , Humanos , Masculino , Ratones Endogámicos BALB C , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Testículo/embriología , Testículo/enzimología
13.
Genome Res ; 26(4): 440-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26888265

RESUMEN

Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting that cis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Variación Genética , Proteínas/genética , Animales , Sitios de Unión , Línea Celular , Biología Computacional/métodos , Secuencia Conservada , Exones , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Primates/genética , Unión Proteica , Proteínas/química , ARN/química , ARN/genética , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados
14.
Mol Endocrinol ; 30(2): 254-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26745669

RESUMEN

Male vertebrate social displays vary from physically simple to complex, with the latter involving exquisite motor command of the body and appendages. Studies of these displays have, in turn, provided substantial insight into neuromotor mechanisms. The neotropical golden-collared manakin (Manacus vitellinus) has been used previously as a model to investigate intricate motor skills because adult males of this species perform an acrobatic and androgen-dependent courtship display. To support this behavior, these birds express elevated levels of androgen receptors (AR) in their skeletal muscles. Here we use RNA sequencing to explore how testosterone (T) modulates the muscular transcriptome to support male manakin courtship displays. In addition, we explore how androgens influence gene expression in the muscles of the zebra finch (Taenopygia guttata), a model passerine bird with a limited courtship display and minimal muscle AR. We identify androgen-dependent, muscle-specific gene regulation in both species. In addition, we identify manakin-specific effects that are linked to muscle use during the manakin display, including androgenic regulation of genes associated with muscle fiber contractility, cellular homeostasis, and energetic efficiency. Overall, our results point to numerous genes and gene networks impacted by androgens in male birds, including some that underlie optimal muscle function necessary for performing acrobatic display routines. Manakins are excellent models to explore gene regulation promoting athletic ability.


Asunto(s)
Andrógenos/farmacología , Atletas , Investigación Biomédica , Aves/genética , Músculo Esquelético/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Cortejo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Masculino , Anotación de Secuencia Molecular , Músculo Esquelético/efectos de los fármacos , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Análisis de Secuencia de ARN , Transcriptoma/genética
15.
Nat Commun ; 6: 6355, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25751603

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are the primary factors underlying adenosine to inosine (A-to-I) editing in metazoans. Here we report the first global study of ADAR1-RNA interaction in human cells using CLIP-seq. A large number of CLIP sites are observed in Alu repeats, consistent with ADAR1's function in RNA editing. Surprisingly, thousands of other CLIP sites are located in non-Alu regions, revealing functional and biophysical targets of ADAR1 in the regulation of alternative 3' UTR usage and miRNA biogenesis. We observe that binding of ADAR1 to 3' UTRs precludes binding by other factors, causing 3' UTR lengthening. Similarly, ADAR1 interacts with DROSHA and DGCR8 in the nucleus and possibly out-competes DGCR8 in primary miRNA binding, which enhances mature miRNA expression. These functions are dependent on ADAR1's editing activity, at least for a subset of targets. Our study unfolds a broad landscape of the functional roles of ADAR1.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Fraccionamiento Celular , Línea Celular , Cartilla de ADN/genética , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Unión Proteica/genética , Ribonucleasa III/metabolismo , Análisis de Secuencia de ARN
16.
Clin Chem ; 61(1): 221-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376581

RESUMEN

BACKGROUND: Extracellular RNAs (exRNAs) in human body fluids are emerging as effective biomarkers for detection of diseases. Saliva, as the most accessible and noninvasive body fluid, has been shown to harbor exRNA biomarkers for several human diseases. However, the entire spectrum of exRNA from saliva has not been fully characterized. METHODS: Using high-throughput RNA sequencing (RNA-Seq), we conducted an in-depth bioinformatic analysis of noncoding RNAs (ncRNAs) in human cell-free saliva (CFS) from healthy individuals, with a focus on microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs). RESULTS: Our data demonstrated robust reproducibility of miRNA and piRNA profiles across individuals. Furthermore, individual variability of these salivary RNA species was highly similar to those in other body fluids or cellular samples, despite the direct exposure of saliva to environmental impacts. By comparative analysis of >90 RNA-Seq data sets of different origins, we observed that piRNAs were surprisingly abundant in CFS compared with other body fluid or intracellular samples, with expression levels in CFS comparable to those found in embryonic stem cells and skin cells. Conversely, miRNA expression profiles in CFS were highly similar to those in serum and cerebrospinal fluid. Using a customized bioinformatics method, we identified >400 circRNAs in CFS. These data represent the first global characterization and experimental validation of circRNAs in any type of extracellular body fluid. CONCLUSIONS: Our study provides a comprehensive landscape of ncRNA species in human saliva that will facilitate further biomarker discoveries and lay a foundation for future studies related to ncRNAs in human saliva.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/análisis , ARN Interferente Pequeño/análisis , ARN/análisis , Saliva/química , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Biomarcadores/análisis , Humanos , MicroARNs/sangre , MicroARNs/líquido cefalorraquídeo , MicroARNs/genética , Datos de Secuencia Molecular , ARN/sangre , ARN/líquido cefalorraquídeo , ARN/genética , ARN Circular , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/líquido cefalorraquídeo , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Chronobiol Int ; 30(4): 443-59, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23286280

RESUMEN

Dysfunctional regulation of brain dopamine (DA) functions has been found in patients with drug addiction and various neurological disorders that frequently accompany disturbance in sleep behavior. In this study, the roles of the dopaminergic nervous system on the regulation of daily locomotor activity rhythm were investigated in Drosophila melanogaster. Reduced synaptic DA release by expressing tetanus toxin gradually attenuated peak activity levels by altering activity patterns, particularly under constant darkness. Besides, flies with a mutant dopamine transporter fumin (fmn), in which the synaptic DA levels were elevated, displayed increased activities in both daytime and nighttime, but did more so at nighttime, suggesting that DA function is involved in regulation of fruit fly's nocturnal locomotor activities. Furthermore, flies treated with bromocriptine, an agonist of Drosophila dopamine D2 receptor (dD2R), exhibited nocturnal locomotor hyperactivity in a dose-dependent manner and this effect was inhibited in dD2R knockdown flies. When mutant flies null for period (per), timeless (tim), dClock (dClk), or cycle (cyc) were treated with bromocriptine, only cycle-null flies (cyc(01)) did not show induced nocturnal hyperactivities, suggesting that cyc might play a role in bromocriptine-induced nocturnal hyperactivities. Elevation of experimental temperature also increased nocturnal activities at the expense of daytime activities. The heat-induced increase in nocturnal activities gradually returned to basal levels at continuously elevated temperature. Inhibition of DA synthesis did not suppress heat-induced early development of nocturnal hyperactivity but prevented gradual decrement of initially elevated nocturnal activities, suggesting that DA impinges on certain adaptive roles in response to changes in environmental temperature. These results overall suggest that controlling dopaminergic transmission is important for daily locomotor behavior and bromocriptine-induced nocturnal hyperactivity which is mediated through dD2R receptor and CYC functions. In parallel to these results, excessive activation of dopaminergic neurotransmission, the primary cause of schizophrenia, is associated with abnormally elevated nocturnal locomotor activities through D2-type receptor in Drosophila. The results suggest that fruit flies are an excellent model system to provide some answers to previously unexplainable observations regarding the compromised dopaminergic nervous system and the related therapeutic agents.


Asunto(s)
Ritmo Circadiano/fisiología , Dopamina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Actividad Motora/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Animales Modificados Genéticamente , Bromocriptina/farmacología , Ritmo Circadiano/genética , Agonistas de Dopamina/farmacología , Proteínas de Drosophila/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Mutación , Receptores de Dopamina D2/genética , Temperatura
18.
Nucleic Acids Res ; 40(13): e104, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22467206

RESUMEN

Establishing the functional roles of genetic variants remains a significant challenge in the post-genomic era. Here, we present a method, allele-specific alternative mRNA processing (ASARP), to identify genetically influenced mRNA processing events using transcriptome sequencing (RNA-Seq) data. The method examines RNA-Seq data at both single-nucleotide and whole-gene/isoform levels to identify allele-specific expression (ASE) and existence of allele-specific regulation of mRNA processing. We applied the methods to data obtained from the human glioblastoma cell line U87MG and primary breast cancer tissues and found that 26-45% of all genes with sufficient read coverage demonstrated ASE, with significant overlap between the two cell types. Our methods predicted potential mechanisms underlying ASE due to regulations affecting either whole-gene-level expression or alternative mRNA processing, including alternative splicing, alternative polyadenylation and alternative transcriptional initiation. Allele-specific alternative splicing and alternative polyadenylation may explain ASE in hundreds of genes in each cell type. Reporter studies following these predictions identified the causal single nucleotide variants (SNVs) for several allele-specific alternative splicing events. Finally, many genes identified in our study were also reported as disease/phenotype-associated genes in genome-wide association studies. Future applications of our approach may provide ample insights for a better understanding of the genetic basis of gene regulation underlying phenotypic diversity and disease mechanisms.


Asunto(s)
Alelos , Perfilación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia de ARN/normas
19.
Genome Res ; 22(1): 142-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21960545

RESUMEN

RNA editing enhances the diversity of gene products at the post-transcriptional level. Approaches for genome-wide identification of RNA editing face two main challenges: separating true editing sites from false discoveries and accurate estimation of editing levels. We developed an approach to analyze transcriptome sequencing data (RNA-seq) for global identification of RNA editing in cells for which whole-genome sequencing data are available. We applied the method to analyze RNA-seq data of a human glioblastoma cell line, U87MG. Around 10,000 DNA-RNA differences were identified, the majority being putative A-to-I editing sites. These predicted A-to-I events were associated with a low false-discovery rate (∼5%). Moreover, the estimated editing levels from RNA-seq correlated well with those based on traditional clonal sequencing. Our results further facilitated unbiased characterization of the sequence and evolutionary features flanking predicted A-to-I editing sites and discovery of a conserved RNA structural motif that may be functionally relevant to editing. Genes with predicted A-to-I editing were significantly enriched with those known to be involved in cancer, supporting the potential importance of cancer-specific RNA editing. A similar profile of DNA-RNA differences as in U87MG was predicted for another RNA-seq data set obtained from primary breast cancer samples. Remarkably, significant overlap exists between the putative editing sites of the two transcriptomes despite their difference in cell type, cancer type, and genomic backgrounds. Our approach enabled de novo identification of the RNA editome, which sets the stage for further mechanistic studies of this important step of post-transcriptional regulation.


Asunto(s)
Genoma Humano/fisiología , Edición de ARN/fisiología , Análisis de Secuencia de ARN/métodos , Transcriptoma/fisiología , Línea Celular Tumoral , Humanos , Análisis de Secuencia de ARN/instrumentación
20.
Cancer Prev Res (Phila) ; 4(1): 116-27, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21205742

RESUMEN

Resveratrol, a dietary phytoalexin readily available in the diet, is reported to possess antitumorigenic properties in several cancers, including colorectal. However, the underlying mechanism(s) involved is not completely understood. In the present study, we investigated the effect of resveratrol treatment on gene modulation in human colorectal cancer cells and identified activating transcription factor 3 (ATF3) as the most highly induced gene after treatment. We confirmed that resveratrol upregulates ATF3 expression, both at the mRNA and protein level, and showed resveratrol involvement in ATF3 transcriptional regulation. Analysis of the ATF3 promoter revealed the importance of early growth response-1 (Egr-1; located at -245 to -236) and Krüppel-like factor 4 (KLF4; located at -178 to -174) putative binding sites in resveratrol-mediated ATF3 transactivation. Specificity of these sites to the Egr-1 and KLF4 protein was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Resveratrol increased Egr-1 and KLF4 expression, which preceded ATF3 expression, and further suggests Egr-1 and KLF4 involvement in resveratrol-mediated activity. We provide evidence for Egr-1 and KLF4 interaction in the presence of resveratrol, which may facilitate ATF3 transcriptional regulation by this compound. Furthermore, we demonstrate that induction of apoptosis by resveratrol is mediated, in part, by increased ATF3 expression. Taken together, these results provide a novel mechanism by which resveratrol induces ATF3 expression and represent an additional explanation of how resveratrol exerts its antitumorigenic effects in human colorectal cancer cells.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Anticarcinógenos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de Tipo Kruppel/genética , Estilbenos/uso terapéutico , Secuencia de Bases , Sitios de Unión , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Luciferasas/metabolismo , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , Resveratrol , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...