Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(1): 134-151, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38112643

RESUMEN

Wnt ligand WNT4 is critical in female reproductive tissue development, with WNT4 dysregulation linked to related pathologies including breast cancer (invasive lobular carcinoma, ILC) and gynecologic cancers. WNT4 signaling in these contexts is distinct from canonical Wnt signaling yet inadequately understood. We previously identified atypical intracellular activity of WNT4 (independent of Wnt secretion) regulating mitochondrial function, and herein examine intracellular functions of WNT4. We further examine how convergent mechanisms of WNT4 dysregulation impact cancer metabolism. In ILC, WNT4 is co-opted by estrogen receptor α (ER) via genomic binding in WNT4 intron 1, while in gynecologic cancers, a common genetic polymorphism (rs3820282) at this ER binding site alters WNT4 regulation. Using proximity biotinylation (BioID), we show canonical Wnt ligand WNT3A is trafficked for secretion, but WNT4 is localized to the cytosol and mitochondria. We identified DHRS2, mTOR, and STAT1 as putative WNT4 cytosolic/mitochondrial signaling partners. Whole metabolite profiling, and integrated transcriptomic data, support that WNT4 mediates metabolic reprogramming via fatty acid and amino acid metabolism. Furthermore, ovarian cancer cell lines with rs3820282 variant genotype are WNT4 dependent and have active WNT4 metabolic signaling. In protein array analyses of a cohort of 103 human gynecologic tumors enriched for patient diversity, germline rs3820282 genotype is associated with metabolic remodeling. Variant genotype tumors show increased AMPK activation and downstream signaling, with the highest AMPK signaling activity in variant genotype tumors from non-White patients. Taken together, atypical intracellular WNT4 signaling, in part via genetic dysregulation, regulates the distinct metabolic phenotypes of ILC and gynecologic cancers. SIGNIFICANCE: WNT4 regulates breast and gynecologic cancer metabolism via a previously unappreciated intracellular signaling mechanism at the mitochondria, with WNT4 mediating metabolic remodeling. Understanding WNT4 dysregulation by estrogen and genetic polymorphism offers new opportunities for defining tumor biology, precision therapeutics, and personalized cancer risk assessment.


Asunto(s)
Neoplasias de la Mama , Neoplasias de los Genitales Femeninos , Humanos , Femenino , Ligandos , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de los Genitales Femeninos/genética , Transducción de Señal , Neoplasias de la Mama/genética , Proteína Wnt4/genética , Carbonil Reductasa (NADPH)/metabolismo
2.
Endocrinology ; 164(12)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37897495

RESUMEN

Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Estrógenos/metabolismo , Línea Celular Tumoral , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
3.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662291

RESUMEN

Background: Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods: To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results: Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions: The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.

4.
J Endocr Soc ; 7(10): bvad117, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37766843

RESUMEN

Background: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, riluzole has shown antitumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. We previously reported that the acquisition of tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by riluzole. Methods: We tested the ability of riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI. Results: Single-agent riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple prosurvival signaling molecules, including Akt/mTOR, CREB, and Fak/Src family kinases. Riluzole, in combination with either fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of riluzole plus fulvestrant significantly reduced proliferation in ex vivo primary breast tumor explant cultures. Conclusion: Riluzole may offer therapeutic benefits in diverse ER+ breast cancers, including lobular breast cancer.

5.
Mol Cancer Res ; 20(6): 837-840, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35276005

RESUMEN

Preclinical model systems are essential research tools that help us understand the biology of invasive lobular carcinoma of the breast (ILC). The number of well-established ILC models is increasing but remain limited. Lower incidence of ILC, underrepresentation of patients with ILC in clinical trials, and intrinsic ILC tumor characteristics all contribute to this challenge. Hence, there is significant need to continually develop better model systems to recapitulate the essential characteristics of ILC biology, genetics, and histology, and empower preclinical therapeutic studies to be translated back into the clinic. In this Perspective, we highlight recent advances in in vivo experimental models, which recapitulate key features of ILC biology and disease progression and potentially reshape the future of ILC translational research. We assert that all existing in vitro and in vivo ILC preclinical models have their strengths and weaknesses, and that it is necessary to bridge key deficiencies in each model context as we move forward with ILC research. Thus, unlocking the mysteries of ILC will be best achieved by choosing the right combination of preclinical model systems.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Biología , Mama/patología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Carcinoma Lobular/terapia , Femenino , Humanos
6.
Cell Commun Signal ; 18(1): 154, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948192

RESUMEN

BACKGROUND: Hormone receptor positive (HR+) breast cancer (BCa) is the most frequently diagnosed subtype. Acquired and intrinsic resistance to conventional endocrine therapy (ET) commonly occurs and prompts incurable metastatic disease. Hence, ET-resistant (ET-R) HR+ BCa presents a therapeutic challenge. Previous studies show elevated androgen receptor (AR) that supports resistance to ET tamoxifen and correlates with HR+ BCa metastasis. Yet surprisingly, studies with AR-blocker enzalutamide (Enz) in ET-R HR+ BCa present conflicting results. We now report that a constitutively active, unique from canonical Enz-targeted, AR accumulates in endocrine resistant HR+ BCa cells. METHODS: AR protein profiles in acquired and intrinsic ET-R HR + -BCa were defined with cell-free modification tests, in-house in-vivo SUMOylation assays, and PLA imaging. Genomic activity of native AR and modified-AR mimetic was tested with reporter assays and limited transcriptome analysis. Spheroid growth and migration studies were used to evaluate inhibitory actions of Enz and combinatorial therapy. RESULTS: Sustained higher molecular weight SUMO-modified AR (SUMO-AR) persists in acquired and intrinsic ET-R BCa cell lines. Concurrently, SUMO isoforms and global SUMO-modified proteome also accumulates in the same cell lines. We identified AR as a novel substrate for the SUMO-E3 ligase HSPB1/Hsp27. Independent of ligand, SUMO-AR is resilient to ubiquitin-mediated proteasomal degradation, enriched in the nucleus, readily chromatin-bound, and transcriptionally active. Constitutive SUMO-AR initiates a gene-expression profile that favors epithelial-mesenchymal transition. Enz combined with a SUMO inhibitor attenuates migration and metastatic phenotype of ET-R HR+ BCa. CONCLUSION: Targeting both unmodified and SUMO-modified AR prevents the metastatic progression of HR+ BCa with ET-R. Video abstract.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Receptores Androgénicos/metabolismo , Proteína SUMO-1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica/patología , Proteolisis/efectos de los fármacos , Sumoilación/efectos de los fármacos
7.
Sci Rep ; 7: 46477, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429743

RESUMEN

SUMO post-translational modification of proteins or SUMOylation ensures normal cell function. Disruption of SUMO dynamics prompts various pathophysiological conditions, including cancer. The burden of deSUMOylating the large SUMO-proteome rests on 6 full-length mammalian SUMO-proteases or SENP. While multiple SENP isoforms exist, the function of these isoforms remains undefined. We now delineate the biological role of a novel SENP7 isoform SENP7S in mammary epithelial cells. SENP7S is the predominant SENP transcript in human mammary epithelia but is significantly reduced in precancerous ductal carcinoma in situ and all breast cancer subtypes. Like other SENP family members, SENP7S has SUMO isopeptidase activity but unlike full-length SENP7L, SENP7S is localized in the cytosol. In vivo, SUMOylated ß-catenin and Axin1 are both SENP7S-substrates. With knockdown of SENP7S in mammary epithelial cells, Axin1-ß-catenin interaction is lost and ß-catenin escapes ubiquitylation-dependent proteasomal degradation. SUMOylated ß-catenin accumulates at the chromatin and activates multiple oncogenes. Hence, non-tumorigenic MCF10-2A cells with reduced SENP7S exhibit greater cell proliferation and anchorage-dependent growth. SENP7S depletion directly potentiates tumorigenic properties of MCF10-2A cells with induction of anchorage-independent growth and self-renewal in 3D-spheroid conditions. Collectively, the results identify SENP7S as a novel mediator of ß-catenin signaling and normal mammary epithelial cell physiology.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Endopeptidasas/metabolismo , Glándulas Mamarias Humanas/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Transformación Celular Neoplásica/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Glándulas Mamarias Humanas/patología
8.
Oncotarget ; 7(21): 30336-49, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27107417

RESUMEN

Epigenetic reprogramming allows cancer cells to bypass normal checkpoints and potentiate aberrant proliferation. Several chromatin regulators are subject to reversible SUMO-modification but little is known about how SUMOylation of chromatin-remodelers modulates the cancer epigenome. Recently, we demonstrated that SUMO-protease SENP7L is upregulated in aggressive BCa and maintains hypoSUMOylated heterochromatin protein 1-α (HP1α). Canonical models define HP1α as a "reader" of repressive H3K9m3 marks that supports constitutive heterochromatin. It is unclear how SUMOylation affects HP1α function in BCa cells. This report shows HP1α SUMO-dynamics are closely regulated in a complex with SENP7L and SUMO-E3 Polycomb-2 (PC2/CBX4). This complex accumulates at H3K9m3 sites, hypoSUMOylates HP1α and PC2, and reduces PC2's SUMO-E3 activity. HyperSUMO conditions cause complex dissociation, SUMOylation of PC2 and HP1α, and recruitment of SUMOylated HP1α to multiple DNA-repair genes including Rad51C. SUMOylated HP1α's enrichment at euchromatin requires chromatin-bound non-coding RNA (ncRNA), reduces Rad51C protein, and increases DNA-breaks in BCa cells. Hence, HP1α SUMOylation and consistently low SENP7L increase efficacy of DNA-damaging chemotherapeutic agents. BCa patients on chemotherapy that express low SENP7L exhibit greater survival rates than patients with high SENP7L. Collectively, these studies suggest that SUMOylated HP1α is a critical epigenetic-regulator of DNA-repair in BCa that could define chemotherapy responsiveness.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Cromosómicas no Histona/metabolismo , ARN no Traducido/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Daño del ADN , Reparación del ADN , Endopeptidasas/genética , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Ligasas/genética , Ligasas/metabolismo , Células MCF-7 , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Interferencia de ARN , ARN no Traducido/genética , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...