Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 126: 112110, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082932

RESUMEN

In this study, a novel nerve guide conduit was developed, based on a three-dimensional (3D) graphene conductive core grown, by chemical vapor deposition (CVD) coupled with a polycaprolactone (PCL) polymer coating. Firstly, the monolithic 3D-graphene foam (3D-GF) was synthesized on Ni foam templates via inductive heating CVD, subsequently, Ni/Graphene samples were dipped successively in PCL and cyclododecane (CDD) solutions prior to the removal of Ni from the 3D-GF/PCL scaffold in FeCl3. Our results showed that the electrical conductivity of the polymer composites reached to 25 S.m-1 after incorporation of 3D-GF. Moreover, the mechanical properties of 3D-GF/PCL composite scaffold were enhanced with respect to the same geometry of PCL scaffolds. The wettability, surface porosity, and morphology did not show any significant changes, while the PC12 cell proliferation and extension were increased for the developed 3D-GF/PCL nanocomposite. It can be concluded that 3D-GF/PCL nanocomposites could be good candidates to utilize as a versatile system for the engineering of peripheral nerve tissue.


Asunto(s)
Grafito , Nanocompuestos , Conductividad Eléctrica , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA