Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 21: 101114, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298354

RESUMEN

Two new -biotics concepts, such as paraprobiotics and postbiotics were introduced, with beneficial effects beyond the viability of probiotic. In this study, the effect of individual (thermal, ohmic heating, high pressure, and ultrasound) and combined (ohmic, high pressure and ultrasound in combination with heating) treatments on the inactivation kinetics of Lactiplantibacillus plantarum was investigated. Different inactivation rates were obtained, up to 8.18 after 10 min at 90 °C, 2.07 after 15 min at a voltage gradient of 20 V/cm, 6.62 after 10 min at 600 MPa and 3.6 after ultrasound treatment for 10 min at 100 % amplitude. The experimental data were fitted to Weibullian model proposed by Peleg, allowing to estimate the inactivation rate coefficient (b) and the shape of the inactivation curves (n). At lower concentration, the samples showed both cytocompatibility and antiproliferative effect, stimulating the cell proliferation on both murine fibroblast and human colorectal adenocarcinoma cell lines.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38247524

RESUMEN

Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.

3.
Foods ; 12(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37444320

RESUMEN

Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented products (FPs) obtained by the microbiome's contribution can be included in functional products due to their meta-biotics (pre-, pro-, post-, and paraprobiotics) as a result of complex and synergistic associations as well as due to the metabolic functionality. In this study, consortia of both SCOBY and WKG were involved in the co-fermentation of a newly formulated substrate that was further analysed, aiming at increasing the postbiotic composition of the FPs. Plackett-Burman (PBD) and Response Surface Methodology (RSM) techniques were employed for the experimental designs to select and optimise several parameters that have an influence on the lyophilised starter cultures of SCOBY and WKG activity as a multiple inoculum. Tea concentration (1-3%), sugar concentration (5-10%), raisins concentration (3-6%), SCOBY lyophilised culture concentration (0.2-0.5%), WKG lyophilised culture concentration (0.2-0.5%), and fermentation time (5-7 days) were considered the independent variables for mathematical analysis and fermentation conditions' optimisation. Antimicrobial activity against Bacillus subtilis MIUG B1, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Aspergillus niger MIUG M5, antioxidant capacity (DPPH), pH and the total acidity (TA) were evaluated as responses. The rich postbiotic bioactive composition of the FP obtained in optimised biotechnological conditions highlighted the usefulness of the artisanal co-cultures, through their symbiotic metabolic interactions for the improvement of bioactive potential.

4.
Foods ; 11(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36230183

RESUMEN

Kombucha culture (named SCOBY-Symbiotic Culture of Bacteria and Yeasts) and milk kefir grains represent multiple consortia of wild microorganisms that include lactic acid bacteria, acetic acid bacteria and yeasts with valuable functional properties. Their fermentative potential provides a wide range of derivate metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) with valuable in vitro and in vivo benefits. This study targeted the evaluation of the functionality of a co-culture of SCOBY-based membranes and milk kefir grains, used as freeze-dried starter cultures, for the fermentation of a newly formulated medium based on black tea infusion, supplemented with bovine colostrum and sugar, in order to produce bioactive compounds with functional properties. The design and optimization of the biotechnological process were achieved by using the Plackett-Burman experimental design (six factorial points, three center points) and the response surface methodology and central composite design (three factorial points, six axial points and two center points in axial) tools. The statistical analysis and the mathematical modelling of the responses such as the pH, titratable acidity, antioxidant activity and antimicrobial activity (against Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Aspergillus niger) were investigated. Further, the composition of organic acids, polyphenols and flavonoids of the fermented product obtained under the optimized fermentation conditions was also analyzed. The fermentation of the medium containing 6.27% (w/v) bovine colostrum powder, 1.64% (w/v) black tea, 7.5% (w/w) sugar, pH 6.7, with an inoculum based of 0.36% (w/v) milk kefir grains powder and 0.5% (w/v) SCOBY-based membrane (both as freeze-dried culture), at 30 °C, for 5 days, in an aerobic stationary system, revealed an antifungal activity between 80 and 100% against Aspergillus niger, an antibacterial activity of 8-22 mm against Escherichia coli and Bacillus spp. And a titratable acidity of 445 °Th. The chemical composition of the obtained product had a positive impact on the functional properties of the fermented products in terms of the antimicrobial and antioxidant properties.

5.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36290751

RESUMEN

Emerging customized designs to upgrade the functional potential of freeze-dried apple pomace was used in this study, in order to transform the industrial by-products into ingredients containing probiotics, for a better and healthier food composition. The freeze-dried apple pomace was analyzed for free and bounded phenolic contents, highlighting a significant level of caffeic acid (4978.00 ± 900.00 mg/100 g dry matter (DM)), trans-cinnamic acid (2144.20 ± 37.60 mg/100 g DM) and quercetin 3-ß-D-glucoside (236.60 ± 3.12 mg/100 g DM). The pectin extraction yield was approximatively 24%, with a degree of esterification of 37.68 ± 1.74%, and a methoxyl content of 5.58 ± 0.88%. The freeze-dried apple pomace was added in a different ratio as a supplement to cultural medium of Loigolactobacillus bifermentans MIUG BL 16, suggesting a significant prebiotic effect (p < 0.05) at concentration between 1% and 2%. The apple pomace was used to design three freeze-dried ingredients containing probiotic, with a high level of polyphenolic content (6.38 ± 0.14 mg gallic acid equivalents/g DM) and antioxidant activity (42.25 ± 4.58 mMol Trolox/g DM) for the powder containing apple pomace ethanolic extract. When inulin was used as a prebiotic adjuvant, the obtained powder showed a 6 log/g DM viable cell count. The ingredients were added to fermented vegetable soy milk-based products, allowing us to improve the polyphenolic content, antioxidant activity and viable cell counts. The approach designed in this study allowed us to obtain ingredients suitable to add value to food, whereas premises to align with the current circular economy premises, by reintegrating the industrial waste as sources of high added value compounds, are also provided.

6.
Food Chem X ; 15: 100374, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35782960

RESUMEN

In this study, red onion skin extract was used to obtain food ingredients. Complex biopolymeric matrices were dissolved in the anthocyanin-rich aqueous extract, followed by gelation and freeze-drying. Powders were characterized regarding encapsulation efficiency (EE), phytochemical content, color, antioxidant activity, and microstructure. Storage and simulated digestion stability were also assessed. Two powders with high contents of bioactives and antioxidant activity were obtained. The highest EE was acquired for the powder with a higher polysaccharides concentration (V2). In addition, V2 exhibited the best storage stability. The in vitro studies demonstrated that increased carbohydrate concentration delivers the best anthocyanins protection. To prove its functionality, V2 was added to a salad dressing. The addition of powder has improved the concentration of biologically active compounds and the antioxidant activity of the salad dressings. These results support the assumption that microencapsulation may deliver bioactives from red onion skin as functional ingredients for value-added foods.

7.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160538

RESUMEN

This study aimed at the extraction and encapsulation of the carotenoids from sea buckthorn fruits and obtaining value-added mayonnaise. First, the carotenoids from sea buckthorn fruits were extracted using ultrasound-assisted extraction. Then, they were microencapsulated through complex coacervation and freeze-drying techniques using different wall material combinations. Two powders were obtained and analyzed in terms of encapsulation efficiency, total carotenoid content, antioxidant activity, stability of phytochemicals and color, morphological structure, and in vitro digestibility. All results pointed out that the carotenoid molecules were successfully encapsulated within the mixture of alginate, agar, and chitosan, with a 61.17 ± 0.89% encapsulation efficiency. To probe the functionality, the powder was added into mayonnaise in 2.5% and 5% amounts. The obtained mayonnaise samples were characterized in terms of phytochemical and antioxidant activity properties with their storage stability and texture, color, and sensory characteristics. A significant increase of total carotenoid content and antioxidant activity compared to the control sample was observed. The addition of powder also led to improved texture by increasing the firmness and adhesion. In addition, the sensory evaluation indicated an improved color and overall acceptability of the value-added mayonnaise. Thus, sea buckthorn extracts may be considered as valuable ingredients for the development of added-value food products.

8.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35052624

RESUMEN

The present study focuses on heat-induced structural changes and the degradation kinetics of phytochemicals and antioxidant activity of red grape skin extract. The thermal degradation of anthocyanins, flavonoids, polyphenols, and antioxidant activity followed a first-order kinetic model, increasing with temperature due to the intensification of the degradation process. The activation energy (Ea) highlighted this phenomenon. Likewise, the kinetic and thermodynamic parameters certified the irreversible degradation of the bioactive compounds from the skin of the Babeasca neagra grape variety. Both temperature and duration of heating had a significant impact on the content of bioactive compounds. In addition, the red grape skin extract inhibited certain enzymes such as α-amylase, α-glucosidase, lipase, and lipoxygenase, which are associated with metabolic syndrome and inflammation. Further knowledge on the possible inhibition mechanisms exerted by the major anthocyanins found in red grape skin extract on the metabolic syndrome-associated enzymes was gathered upon running molecular docking tests. Detailed analysis of the resulting molecular models revealed that malvidin 3-O-glucoside binds in the vicinity of the catalytic site of α-amylase and lipase, whereas no direct contact with catalytic amino acids was identified in the case of α-glucosidase and lipoxygenase.

9.
Plants (Basel) ; 10(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834693

RESUMEN

This study aimed to investigate the thermal stability and biological activities of the phytochemicals from the red onion skins extract, which are a rich source of anthocyanins. Eight anthocyanins were identified in the extract by high-performance liquid chromatography, the most abundant ones being cyanidin 3-O-laminaribioside and cyanidin 3-O-(6″-malonoyl-laminaribioside). The study also involved the assessment of the thermal degradation kinetics of anthocyanins and antioxidant activity in the 75-155 °C temperature range. The thermal degradation kinetics was described using the first-order kinetics model. In terms of thermal stability, increasing the temperature resulted in lower half-life values (t1/2) and higher degradation rate constant values (k) for both anthocyanins and antioxidant activity. The thermodynamic parameters revealed that the phytochemicals' degradation is a non-spontaneous and endothermic reaction. Furthermore, the inhibitory effect of the extract was investigated against the enzymes affiliated with metabolic syndrome, oxidative stress, and inflammatory process diseases. Thus, we also demonstrated that the red onion skins extract exerted inhibitory activity on α-glucosidase, α-amylase, lipase, and lipoxygenase. Considering the high content of bioactives and various biological properties, the red onion skins extract is suitable for multiple applications.

10.
Microorganisms ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835310

RESUMEN

Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.

11.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34829579

RESUMEN

The objective of this study is to encapsulate flavonoids from yellow onion skins in whey protein isolates (WPI) and xylose (X), by Maillard-based conjugates, as an approach to improve the ability to entrap flavonoids and to develop powders with enhanced antioxidant activity. WPI (0.6%, w/v) was conjugated to X (0.3%, w/v) through the Maillard reaction at 90 °C for 120 min, in the presence of a flavonoid-enriched extract. Two variants of powders were obtained by freeze-drying. The glycation of WPI allowed a better encapsulation efficiency, up to 90.53 ± 0.29%, corresponding to a grafting degree of 30.38 ± 1.55%. The molecular modelling approach was used to assess the impact of X interactions with α-lactalbumin and ß-lactoglobulin on the ability of these proteins to bind the main flavonoids from the yellow onion skins. The results showed that X might compete with quercetin glucosides to bind with α-lactalbumin. No interference was found in the case of ß-lactoglobulin. The microstructural appearance of the powders revealed finer spherosomes in powder with WPI-X conjugates via the Maillard reaction. The powders were added to nachos, followed by a phytochemical characterization, in order to test their potential added value. An increase in antioxidant activity was observed, with no significant changes during storage.

12.
Plants (Basel) ; 10(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803722

RESUMEN

This study aimed to use eggplant peels as a potential source of anthocyanins with biological activities. Two different extraction methods were tested in order to obtain extracts with a high anthocyanin content. The selected methods were the solid-liquid extraction (SLE) and ultrasound-assisted extraction (UAE) methods. For each method, two concentrations of ethanol (EtOH) were used, while varying the extraction time and temperature. Based on the results, the extracts obtained by SLE using EtOH 96% after 30 min of extraction at 50 °C showed the highest anthocyanin concentration. The UAE allowed the best results with EtOH 96% after 30 min at 25 °C. Both selected extracts showed similar chromatographic profiles, with delphinidin 3-O-rutinoside as the major anthocyanin, but in a higher concentration in UAE. The extracts also presented inhibitory activity against lipoxygenase (LOX), lipase, and α-amylase, thus suggesting a possible involvement in reducing the risk of various disorders. The first order kinetic model was used to predict the changes that can occur in the anthocyanin content and antioxidant activity from the eggplant peel extract. The calculated kinetic and thermodynamic parameters confirm the irreversible degradation of phytochemicals.

13.
Antioxidants (Basel) ; 10(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540878

RESUMEN

Tomato peels are used as a valuable material to extract lycopene-rich oleoresins by supercritical CO2 extraction. The extraction involves continuous circling of CO2 to the extractor after removing the solute in the separators, S40 and S45, where the solvent power of the CO2 is reduced by reducing pressure down to 20 MPa in S40 and 5 MPa in S45, respectively, leading to two extracts. Lycopene is found to be the major compound, representing 93% and 76% of the total carotenoids in S40 and S45 extracts, respectively. The two extracts are microencapsulated in whey protein concentrate and acacia gum by complex coacervation and freeze-drying, leading to corresponding P40 and P45 powders, with antioxidant activity of 8.57 ± 0.74 and 9.37 ± 0.48 mMol TEAC/g DW in P40 and P45, respectively. Different structural and morphological patterns are observed, with finer microparticles of 1-2 µm in P45. Both powders show dose and time-dependent antiproliferative activity. The half-maximal inhibitory concentration values are 100 µg/mL for P40 and 750 µg/mL for P45 sample, indicating a higher antiproliferative effect of P40 over P45 in HT-29 cell culture. The powders have an extended range of cytocompatibility, up to 1000 µg/mL, in L929 normal cells, stimulating the cell growth. Lycopene retention is tested, and values of 48% and 29% in P40 and P45 are found after 21 days at 25 °C, with the degradation rate in P45 significantly higher, due to the higher content of the surface lycopene, which favored its degradation.

14.
Pharmaceutics ; 12(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158041

RESUMEN

In this study, flavonoids extracted from yellow onion skins and Lactobacillus casei were encapsulated in a combination of whey protein isolate, inulin and maltodextrin with an encapsulation efficiency of 84.82 ± 0.72% for flavonoids and 72.49 ± 0.11% for lactic acid bacteria. The obtained powder showed a flavonoid content of 89.49 ± 4.12 mg quercetin equivalents/g dry weight (DW) and an antioxidant activity of 39.27 ± 0.45 mM Trolox/g DW. The powder presented a significant antidiabetic and anti-inflammatory potential, with an inhibitory effect on α-amylase, lipase and lipoxygenase of 76.40 ± 2.30%, 82.58 ± 3.36% and 49.01 ± 0.62%, respectively. The results obtained for in vitro digestion showed that the coating materials have a protective effect on the flavonoids release. Cytotoxicity results indicated that the powder was cytocompatible up to a concentration of 500 µg/mL. The functional potential of the powder was tested by adding in a selected food matrix, highlighting a good stability of the phytochemicals, whereas an increase with 1 log cell forming unit (CFU)/g DW was observed after 21 days of storage. The obtained results are promising in the valorization of natural antioxidants in combination with lactic acid bacteria in order to develop multifunctional ingredients with value-added for food and pharmaceutics applications.

15.
J Food Sci ; 85(12): 4290-4299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175407

RESUMEN

Our study describes in detail the binding mechanism between the main flavonoids that were extracted from onion skins by supercritical CO2 and peptides from whey proteins, from the perspective of obtaining multifunctional ingredients, with health-promoting benefits. The supercritical CO2 extract had 202.31 ± 11.56 mg quercetin equivalents/g DW as the major flavonoid and antioxidant activity of 404.93±1.39 mM Trolox/g DW. The experiments on thermolysin-derived peptides fluorescence quenching by flavonoids extract allowed estimating the binding parameters, in terms of binding constants, and the number of binding sites. The thermodynamic analysis indicated that the main forces involved in complex formation were hydrogen bonds and van der Waals interactions. Molecular docking tests indicated that peptide fluorescence quenching upon gradual addition of onion skin extract might be due to flavonoids binding by Val15 -Ser21 . All 7 to 14 amino acids long peptides appeared to have affinity toward quercetin-3,4'-O-diglucoside and quercetin-4'-O-monoglucoside. The study is important as a potential solution for reuse of valuable resources, underutilized, such as whey peptides and yellow onion skins flavonoids for efficient microencapsulation, as a holistic approach to deliver healthy and nutritious food. PRACTICAL APPLICATION: A growing interest was noticed in the last years in investigating the interactions between proteins and different biologically active compounds, such as to provide knowledge for efficient development of new food, pharmaceutical, and cosmetic products. Recent studies suggest that flavonoid-protein complexes may be designed to improve the functional performance of the flavonoids. The results obtained in this study bring certain benefits in terms of exploiting the bioactive potential of both flavonoids and bioactive peptides, for developing of formulas with improved functional properties.


Asunto(s)
Antioxidantes/química , Flavonoides/química , Lactoglobulinas/química , Cebollas/química , Péptidos/química , Animales , Antioxidantes/aislamiento & purificación , Sitios de Unión , Bovinos , Cromatografía con Fluido Supercrítico , Flavonoides/aislamiento & purificación , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Péptidos/aislamiento & purificación , Unión Proteica , Quercetina/química , Quercetina/aislamiento & purificación
16.
Foods ; 9(11)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153003

RESUMEN

The thermal degradation of the anthocyanins and antioxidant activity in purple maize extracts was determined between 80 and 180 °C. The anthocyanins were found to be thermostable in the temperature range of 80 to 120 °C, whereas at higher temperatures the thermal degradation of both anthocyanins and antioxidant activity followed a first-order kinetic model. The z-values started from 61.72 ± 2.28 °C for anthocyanins and 75.75 ± 2.87 °C for antioxidant activity. The conformational space of pairs of model anthocyanin molecules at 25 and 180 °C was explored through a molecular dynamics test, and results indicated the occurrence of intermolecular self-association reactions and intramolecular co-pigmentation events, which might help explaining the findings of the degradation kinetics. The relationship between thermal degradation of anthocyanins and antioxidant activity and the in vitro release was further studied. The unheated extracts showed a high stability under gastric environment, whereas after heating at 180 °C, the digestion ended quickly after 60 min. After simulated intestinal digestion, the anthocyanins were slowly decreased to a maximum of 12% for the unheated extracts, whereas an 83% decrease was found after preliminary heating at 180 °C. The thermal degradation of anthocyanins was positively correlated with the in vitro decrease of antioxidant activity.

17.
Molecules ; 25(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126733

RESUMEN

Lavender flowers were used in this study as a source of phytochemicals as naturally occurring antioxidants. Two different extraction techniques were applied, such as ultrasound-assisted (UAE) and supercritical fluids (SCE) methods. The comparative evaluation of the phytochemicals profile evidenced a higher content of chlorophyll a and b of 5.22 ± 0.12 mg/g dry weight (D.W.) and 2.95 ± 0.16 mg/g D.W, whereas the carotenoids content was 18.24 ± 0.04 mg/g D.W. in the SCE extract. Seven main compounds were found in both extracts: ß-linalool, eucalyptol, linalool acetate, ß-trans-ocimene, and limonene in SCE and linalool acetate, ß-linalool, 6-methyl-2-(2-oxiranyl)-5-hepten-2-ol, linalool oxide, lavandulyl acetate and camphor in UAE. The (n-3) acids had a higher contribution in SCE. The extracts were microencapsulated in different combinations of wall materials based on polysaccharides and milk proteins. The four variants showed different phytochemical and morphological profiles, with a better encapsulating efficiency for proteins (up to 98%), but with a higher content of encapsulated carotenoids for polysaccharides, the latter showing remarkable antimicrobial activity against selected microorganisms. Carboxymethyl cellulose and whey proteins led to a double encapsulation of lipophilic compounds. The powders were tested in two food matrices as ingredients, with multiple targeted functions, such as flavoring, antimicrobial, antioxidant activity that can successfully replace synthetic additives.


Asunto(s)
Alimentos , Lavandula/química , Fitoquímicos/farmacología , Cápsulas , Flores/química , Fitoquímicos/química
18.
Biomolecules ; 10(10)2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036339

RESUMEN

This study focuses on combining different bioprocessing tools in order to develop an in-depth engineering approach for enhancing the biological properties of two valuable food by-products, namely fish waste and yellow onion skins, in a single new bioactive formulation. Bone tissue from phytophagous carp (Hypophthalmichthys molitrix) was used to obtain bioactive peptides through papain-assisted hydrolysis. The peptides with molecular weight lower than 3 kDa were characterized through MALDI-ToF/ToF mass spectrometry and bioinformatics tools. As a prerequisite for microencapsulation, the ability of these peptides to bind the flavonoids extracted from yellow onion skins was further tested through fluorescence quenching measurements. The results obtained demonstrate a considerable binding potency with a binding value of 106 and also the presence of one single or one class of binding site during the interaction process of flavonoids with peptides, in which the main forces involved are hydrogen bonds and van der Waals interactions. In the freeze-drying microencapsulation process, an efficiency for total flavonoids of 88.68 ± 2.37% was obtained, considering the total flavonoids and total polyphenols from the powder of 75.72 ± 2.58 quercetin equivalents/g dry weight (DW) and 97.32 ± 2.80 gallic acid equivalents/g DW, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the L929 cell line cultivated in the presence of different concentrations of microencapsulated samples (0.05-1.5 mg/mL) proved no sign of cytotoxicity, the cell viability being over 80% for all the samples.


Asunto(s)
Carpas , Proteínas de Peces/química , Flavonoides/química , Cebollas/química , Péptidos/química , Extractos Vegetales/química , Hidrolisados de Proteína/química , Animales , Hidrólisis
19.
Microorganisms ; 8(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824265

RESUMEN

Clofibric acid (CLF) is the main pharmacologically active metabolite in composition of the pharmaceutical products used for controlling blood lipid content. This xenobiotic compound is highly persistent in the aquatic environment and passes unchanged or poorly transformed in wastewater treatment plants. A white-rot fungal strain of Trametes pubescens was previously selected, for its ability for clofibric acid biodegradation (up to 30%) during cultivation in submerged system under aerobic conditions at an initial CLF concentration of 15 mg L-1. Plackett-Burman design (PBD) and response surface methodology (RSM) were used for experimental planning, mathematical modelling and statistical analysis of data of the biotechnological process of CLF biotransformation by Trametes pubescens fungal strain. After optimization, the capacity of the selected Trametes pubescens strain to degrade CLF was increased by cultivation in a liquid medium containing 3 g·L-1 yeast extract, 15 g·L-1 peptone, 5 g·L-1 glucose and mineral salts, inoculated at 2% (v/v) vegetative inoculum and cultivated at pH 5.5, during 14 days at 25 °C and 135 rpm. In these optimized biotechnological conditions, the CLF biotransformation yield was 60%.

20.
Microorganisms ; 8(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32708033

RESUMEN

This study reports the biovalorization of the two agri-food by-products (pork lard and freeze-dried okara) through solid-state fermentation using a monoculture of Yarrowia lipolytica or a co-culture of Y. lipolytica and Lactobacillus paracasei, for developing a valuable fermented product with antioxidant and antimicrobial activity. First, some yeast strains were selected based on their properties to produce enzymes (protease and lipase) by cultivation on 5% (w/v) pork lard or 2% (w/v) freeze-dried okara. Two selected strains, Y. lipolytica MIUG D5 and Y. lipolytica ATCC 18942, were further used for the fermentation alone or in a co-culture with L. paracasei MIUG BL2. The Plackett-Burman experimental design was used to establish the effects of the fermentation parameters in order to obtain a fermented product with improved antioxidant and antimicrobial activities. As the Plackett-Burman experimental design are independent variables, the concentrations of the freeze-dried okara, pork lard, glycerol, inoculums type, inoculum concentration, and the fermentation time were analyzed. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging potential and the antimicrobial activity against aerobic spore-forming microorganisms were assessed as responses. For the fermented products, an antioxidant potential between 6.77-17.78 mM TE/g was obtained while the antimicrobial activity against Aspergillus niger ranged from 24 to 64%. Based on the statistical analysis, the time of the yeast fermentation and the concentration of pork lard were selected as variables with the influence on the SSF fermentation process and the functional properties of the fermented product. In the general context of a circular economy, the results demonstrate the possibility of bio-transforming the freeze-dried okara and the pork lard using Y. lipolytica as a valuable workhorse for the lactic acid bacteria (LAB) metabolism and postbiotics production into a fermented product, which is recommended for use as a food and feed ingredient with biotic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...