Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 37(4): 640-654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271968

RESUMEN

OBJECTIVE: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. METHODS: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. RESULTS: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 µM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 µM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 µM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. CONCLUSION: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38263469

RESUMEN

To investigate the effect of Y-27632 on low-temperature metabolism of sheep sperm, different concentrations of Y-27632 were added to sheep semen at 4 °C in this experiment to detect indicators such as sperm motility, plasma membrane, acrosome, antioxidant performance, mitochondrial membrane potential (MMP), and metabolomics. The results showed that the addition of 20 µM Y-27632 significantly increased sperm motility, plasma membrane integrity rate, acrosome integrity rate, antioxidant capacity, MMP level, significantly increased sperm adenosine triphosphate (ATP) and total cholesterol content, and significantly reduced sperm Ca2+ content. In metabolomics analysis, compared with the control group, the 20 µM Y-27632 group screened 20 differential metabolites, mainly involved in five metabolic pathways, with the most significant difference in Histidine metabolism (P = 0.001). The results confirmed that Y-27632 significantly improved the quality of sheep sperm preservation under low-temperature conditions.


Sheep semen preservation and artificial insemination is an important reproductive technology that supports the large-scale and intensive development of the sheep farming industry. Under low-temperature condition, sperm metabolic activity slows down or pauses, energy consumption decreases, thereby prolonging sperm preservation time and motility. During the process of sperm preservation, sperm are susceptible to cold shock damage, which affects the quality of sperm preservation. Y-27632 is a rho-associated cooled-coil kinase (ROCK) inhibitor that competes with ATP to inhibit the kinase activity of ROCK-I and ROCK-II. However, the study of Y-27632 used in sheep semen preservation and its protective mechanism is less. In this study, we used the ROCK inhibitor Y-27632 and the ROCK activator arachidonic acid (AA) for low-temperature preservation of sheep semen and related metabolic regulation mechanisms. This experiment confirmed that Y-27632 played a significant protective role by regulating sperm metabolism and protecting sperm plasma membrane in sheep.


Asunto(s)
Amidas , Piridinas , Preservación de Semen , Semen , Masculino , Animales , Ovinos , Semen/metabolismo , Antioxidantes/metabolismo , Motilidad Espermática , Espermatozoides , Preservación de Semen/veterinaria , Criopreservación/veterinaria
3.
Molecules ; 29(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202772

RESUMEN

The aim of this study was to investigate the effects of sodium salicylate (SS) on the preservation and metabolic regulation of sheep sperm. Under 4 °C low-temperature conditions, SS (at 10 µM, 20 µM, 30 µM, and 50 µM) was added to the semen diluent to detect sperm motility, plasma membrane, and acrosome integrity. Based on the selected optimal concentration of SS (20 µM), the effects of 20 µM of SS on sperms' antioxidant capacity and mitochondrial membrane potential (MMP) were evaluated, and metabolomics analysis was conducted. The results showed that on the 20th day of low-temperature storage, the sperm motility of the 20 µM SS group was 62.80%, and the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly higher than those of the control group (p < 0.01). The content of Ca2+, reactive oxygen species (ROS), and malondialdehyde (MDA) were significantly lower than those of the control group (p < 0.01), and the total antioxidant capacity (T-AOC) was significantly higher than that of the control group (p < 0.05); mitochondrial activity and the total cholesterol (TC) content were significantly higher than those in the control group (p < 0.01). An ultrastructural examination showed that in the SS group, the sperm plasma membrane and acrosome were intact, the fibrous sheath and axoneme morphology of the outer dense fibers were normal, and the mitochondria were arranged neatly. In the control group, there was significant swelling of the sperm plasma membrane, rupture of the acrosome, and vacuolization of mitochondria. Using metabolomics analysis, 20 of the most significant differential metabolic markers were screened, mainly involving 6 metabolic pathways, with the amino acid biosynthesis pathway being the most abundant. In summary, 20 µM of SS significantly improved the preservation quality of sheep sperm under low-temperature conditions of 4 °C.


Asunto(s)
Semen , Salicilato de Sodio , Masculino , Animales , Ovinos , Antioxidantes/farmacología , Motilidad Espermática , Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...