Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38661200

RESUMEN

In extreme and nanoconfinement conditions, the tetrahedral arrangement of water molecules is challenged, resulting in a rich and new phase behavior unseen in bulk phases. The unique phase behavior of water confined in hydrophobic nanoslits has been previously observed, such as the formation of a variety of two-dimensional (2D) ices below the freezing temperature. The primary identified 2D ice phase, termed square tube ice (STI), represents a unique arrangement of water molecules in 2D ice, which can be viewed as an array of 1D ice nanotubes stacked in the direction parallel to the confinement plane. In this study, we report the molecular dynamics (MD) simulations evidence of a novel 2D ice phase, namely, helical square tube ice (H-STI). H-STI is characterized by the stacking of helical ice nanotubes in the direction parallel to the confinement plane. Its structural specificity is evident in the presence of helical square ice nanotubes, a configuration unseen in both STI and single-walled ice nanotubes. A detailed analysis of the hydrogen bonding strength showed that H-STI is a 2D ice phase diverging from the Bernal-Fowler-Pauling ice rules by forming only two strong hydrogen bonds between adjacent molecules along its helical ice chain. This arrangement of strong hydrogen bonds along ice nanotube and weak bonds between the ice nanotube shows a similarity to quasi-one-dimensional van der Waals materials. Ab initio molecular dynamics simulations (over a 30 ps) were employed to further verify H-STI's stability at 1 GPa and temperature up to 200 K.

2.
Nat Commun ; 10(1): 1925, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028288

RESUMEN

Water can freeze into diverse ice polymorphs depending on the external conditions such as temperature (T) and pressure (P). Herein, molecular dynamics simulations show evidence of a high-density orthorhombic phase, termed ice χ, forming spontaneously from liquid water at room temperature under high-pressure and high external electric field. Using free-energy computations based on the Einstein molecule approach, we show that ice χ is an additional phase introduced to the state-of-the-art T-P phase diagram. The χ phase is the most stable structure in the high-pressure/low-temperature region, located between ice II and ice VI, and next to ice V exhibiting two triple points at 6.06 kbar/131.23 K and 9.45 kbar/144.24 K, respectively. A possible explanation for the missing ice phase in the T-P phase diagram is that ice χ is a rare polarized ferroelectric phase, whose nucleation/growth occurs only under very high electric fields.

3.
Proc Natl Acad Sci U S A ; 115(41): 10263-10268, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30249649

RESUMEN

Both carbon dioxide (CO2) and water (H2O) are triatomic molecules that are ubiquitous in nature, and both are among the five most abundant gases in the Earth's atmosphere. At low temperature and ambient pressure, both CO2 and H2O form molecular crystals--dry ice I and ice I h Because water possesses distinctive hydrogen bonds, it exhibits intricate and highly pressure-dependent phase behavior, including at least 17 crystalline ice phases and three amorphous ice phases. In contrast, due to its weak van der Waals intermolecular interactions, CO2 exhibits fewer crystalline phases except at extremely high pressures, where nonmolecular ordered structures arise. Herein, we show the molecular dynamics simulation results of numerous 2D polymorphs of CO2 molecules in slit nanopores. Unlike bulk polymorphs of CO2, 2D CO2 polymorphs exhibit myriad crystalline and amorphous structures, showing remarkable polymorphism and polyamorphism. We also show that depending on the thermodynamic path, 2D solid-to-solid phase transitions can give rise to previously unreported structures, e.g., wave-like amorphous CO2 structures. Our simulation also suggests intriguing structural connections between 2D and 3D dry ice phases (e.g., Cmca and PA-3) and offers insights into CO2 polyamorphic transitions through intermediate liquid or amorphous phases.

4.
Proc Natl Acad Sci U S A ; 115(19): 4839-4844, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29691325

RESUMEN

Akin to bulk water, water confined to an isolated nanoslit can show a wealth of new 2D phases of ice and amorphous ice, as well as unusual phase behavior. Indeed, 2D water phases, such as bilayer hexagonal ice and monolayer square ice, have been detected in the laboratory, confirming earlier computational predictions. Herein, we report theoretical evidence of a hitherto unreported state, namely, bilayer very low density amorphous ice (BL-VLDA), as well as evidence of a strong first-order transition between BL-VLDA and the BL amorphous ice (BL-A), and a weak first-order transition between BL-VLDA and the BL very low density liquid (BL-VLDL) water. The diffusivity of BL-VLDA is typically in the range of 10-9 cm2/s to 10-10 cm2/s. Similar to bulk (3D) water, 2D water can exhibit two forms of liquid in the deeply supercooled state. However, unlike supercooled bulk water, for which the two forms of liquid can coexist and merge into one at a critical point, the 2D BL-VLDL and BL high-density liquid (BL-HDL) phases are separated by the highly stable solid phase of BL-A whose melting line exhibits the isochore end point (IEP) near 220 K in the temperature-pressure diagram. Above the IEP temperature, BL-VLDL and BL-HDL are indistinguishable. At negative pressures, the metastable BL-VLDL exhibits a spatially and temporally heterogeneous structure induced by dynamic changes in the nanodomains, a feature much less pronounced in the BL-HDL.

5.
Proc Natl Acad Sci U S A ; 114(16): 4066-4071, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373562

RESUMEN

Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called "no-man's land" under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature-pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions.


Asunto(s)
Isocoras , Nanotubos de Carbono/química , Transición de Fase , Agua/química , Simulación de Dinámica Molecular , Termodinámica
6.
Phys Chem Chem Phys ; 18(32): 22039-46, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27468430

RESUMEN

Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.

7.
ACS Nano ; 9(12): 12197-204, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26575824

RESUMEN

Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [ Nature , 2015 , 519 , 443 - 445 ]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.

8.
Acc Chem Res ; 47(8): 2505-13, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25088018

RESUMEN

Understanding phase behavior of highly confined water, ice, amorphous ice, and clathrate hydrates (or gas hydrates), not only enriches our view of phase transitions and structures of quasi-two-dimensional (Q2D) solids not seen in the bulk phases but also has important implications for diverse phenomena at the intersection between physical chemistry, cell biology, chemical engineering, and nanoscience. Relevant examples include, among others, boundary lubrication in nanofluidic and lab-on-a-chip devices, synthesis of antifreeze proteins for ice-growth inhibition, rapid cooling of biological suspensions or quenching emulsified water under high pressure, and storage of H2 and CO2 in gas hydrates. Classical molecular simulation (MD) is an indispensable tool to explore states and properties of highly confined water and ice. It also has the advantage of precisely monitoring the time and spatial domains in the sub-picosecond and sub-nanometer scales, which are difficult to control in laboratory experiments, and yet allows relatively long simulation at the 10(2) ns time scale that is impractical with ab initio molecular dynamics simulations. In this Account, we present an overview of our MD simulation studies of the structures and phase behaviors of highly confined water, ice, amorphous ice, and clathrate, in slit graphene nanopores. We survey six crystalline phases of monolayer (ML) ice revealed from MD simulations, including one low-density, one mid-density, and four high-density ML ices. We show additional supporting evidence on the structural stabilities of the four high-density ML ices in the vacuum (without the graphene confinement), for the first time, through quantum density-functional theory optimization of their free-standing structures at zero temperature. In addition, we summarize various low-density, high-density, and very-high-density Q2D bilayer (BL) ice and amorphous ice structures revealed from MD simulations. These simulations reinforce the notion that the nanoscale confinement not only can disrupt the hydrogen bonding network in bulk water but also can allow satisfaction of the ice rule for low-density and high-density Q2D crystalline structures. Highly confined water can serve as a generic model system for understanding a variety of Q2D materials science phenomena, for example, liquid-solid, solid-solid, solid-amorphous, and amorphous-amorphous transitions in real time, as well as the Ostwald staging during these transitions. Our simulations also bring new molecular insights into the formation of gas hydrate from a gas and water mixture at low temperature.


Asunto(s)
Simulación de Dinámica Molecular , Agua/química , Gases/química , Enlace de Hidrógeno , Hielo , Transición de Fase , Teoría Cuántica , Electricidad Estática
9.
J Am Chem Soc ; 136(30): 10661-8, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-24885238

RESUMEN

We present molecular dynamics simulation evidence of spontaneous formation of quasi-one-dimensional (Q1D) hydrogen gas hydrates within single-walled carbon nanotubes (SW-CNTs) of nanometer-sized diameter (1-1.3 nm) near ambient temperature. Contrary to conventional 3D gas hydrates in which the guest molecules are typically contained in individual and isolated cages in the host lattice, the guest H2 molecules in the Q1D gas hydrates are contained within a 1D nanochannel in which the H2 molecules form a molecule wire. In particular, we show that in the (15,0) zigzag SW-CNT, the hexagonal H2 hydrate tends to form, with one H2 molecule per hexagonal prism, while in the (16,0) zigzag SW-CNT, the heptagonal H2 hydrate tends to form, with one H2 molecule per heptagonal prism. In contrast, in the (17,0) zigzag SW-CNT, the octagonal H2 hydrate can form, with either one H2 or two H2 molecules per pentagonal prism (single or double occupancy). Interestingly, in the hexagonal or heptagonal ice nanotube, the H2 wire is solid-like as the axial diffusion constant is very low (<5 × 10(-10) cm(2)/s), whereas in the octagonal ice nanotube, the H2 wire is liquid-like as its axial diffusion constant is comparable to 10(-5) cm(2)/s.

10.
J Chem Phys ; 140(18): 184507, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24832288

RESUMEN

Liquid-solid and solid-solid phase transitions of a monolayer water confined between two parallel hydrophobic surfaces are studied by molecular dynamics simulations. The solid phase considered is the high-density rhombic monolayer ice. Based on the computed free energy surface, it is found that at a certain width of the slit nanopore, the monolayer water exhibits not only a high freezing point but also a low energy barrier to crystallization. Moreover, through analyzing the oxygen-hydrogen-oxygen angle distribution and oxygen-hydrogen radial distribution, the high-density monolayer ice is classified as either a flat ice or a puckered ice. The transition between a flat ice and a puckered ice reflects a trade-off between the water-wall interactions and the electrostatic interactions among water molecules.

11.
Sci Rep ; 4: 4581, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24694918

RESUMEN

Crystallographic orientations determine the optical, electrical, mechanical, and thermal properties of crystals. Control of crystallographic orientations has been studied by changing the growth parameters, including temperature, pressure, proportion of precursors, and surface conditions. However, molecular dynamic mechanisms underlying these controls remain largely unknown. Here we achieved control of crystallographic orientations in diamond growth through a joint experimental and theoretical study of laser resonant vibrational excitation of precursor molecules (ethylene). Resonant vibrational excitation of the ethylene molecules using a wavelength-tunable CO2 laser steers the chemical reactions and promotes proportion of intermediate oxide species, which results in preferential growth of {100}-oriented diamond films and diamond single crystals in open air. Quantum molecular dynamic simulations and calculations of chemisorption energies of radicals detected from our mass-spectroscopy experiment provide an in-depth understanding of molecular reaction mechanisms in the steering of chemical reactions and control of crystallographic orientations. This finding opens up a new avenue for controlled chemical vapor deposition of crystals through resonant vibrational excitations to steer surface chemistry.

12.
J Chem Theory Comput ; 9(8): 3299-310, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26584089

RESUMEN

We devise a new computational approach to compute solid-liquid phase equilibria of confined fluids. Specifically, we extend the multibaric-multithermal ensemble method with an anisotropic pressure control to achieve the solid-liquid phase equilibrium for confined water inside slit nanopores (with slit width h ranging from 5.4 Å to 7.2 Å). A unique feature of this multibaric-multithermal ensemble is that the freezing points of confined water can be determined from the heat-capacity peaks. The new approach has been applied to compute the freezing point of two monolayer ices, namely, a high-density flat rhombic monolayer ice (HD-fRMI) and a high-density puckered rhombic monolayer ice (HD-pRMI) observed in our simulation. We find that the liquid-to-solid transition temperature (or the freezing point) of HD-pRMI is dependent on the slit width h, whereas that of HD-fRMI is nearly independent of the h.

13.
Proc Natl Acad Sci U S A ; 109(52): 21240-5, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236178

RESUMEN

A distinctive physical property of bulk water is its rich solid-state phase behavior, which includes 15 crystalline (ice I-ice XIV) and at least 3 glassy forms of water, namely, low-density amorphous, high-density amorphous, and very-high-density amorphous (VHDA). Nanoscale confinement adds a new physical variable that can result in a wealth of new quasi-2D phases of ice and amorphous ice. Previous computer simulations have revealed that when water is confined between two flat hydrophobic plates about 7-9 Šapart, numerous bilayer (BL) ices (or polymorphs) can arise [e.g., BL-hexagonal ice (BL-ice I)]. Indeed, growth of the BL-ice I through vapor deposition on graphene/Pt(111) substrate has been achieved experimentally. Herein, we report computer simulation evidence of pressure-induced amorphization from BL-ice I to BL-amorphous and then to BL-VHDA(2) at 250 K and 3 GPa. In particular, BL-VHDA(2) can transform into BL-VHDA(1) via decompression from 3 to 1.5 GPa at 250 K. This phenomenon of 2D polyamorphic transition is akin to the pressure-induced amorphization in 3D ice (e.g., from hexagonal ice to HDA and then to VHDA via isobaric annealing). Moreover, when the BL-ice I is compressed instantly to 6 GPa, a new very-high-density BL ice is formed. This new phase of BL ice can be viewed as an array of square ice nanotubes. Insights obtained from pressure-induced amorphization and crystallization of confined water offer a guide with which to seek a thermodynamic path to grow a new form of methane clathrate whose BL ice framework exhibits the Archimedean 4⋅8(2) (square-octagon) pattern.

14.
Proc Natl Acad Sci U S A ; 107(13): 5718-22, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20304796

RESUMEN

Three-dimensional (3D) gas clathrates are ice-like but distinguished from bulk ices by containing polyhedral nano-cages to accommodate small gas molecules. Without space filling by gas molecules, standalone 3D clathrates have not been observed to form in the laboratory, and they appear to be unstable except at negative pressure. Thus far, experimental evidence for guest-free clathrates has only been found in germanium and silicon, although guest-free hydrate clathrates have been found, in recent simulations, able to grow from cold stretched water, if first nucleated. Herein, we report simulation evidence of spontaneous formation of monolayer clathrate ice, with or without gas molecules, within hydrophobic nano-slit at low temperatures. The guest-free monolayer clathrate ice is a low-density ice (LDI) whose geometric pattern is identical to Archimedean 4.8(2)-truncated square tiling, i.e. a mosaic of tetragons and octagons. At large positive pressure, a second phase of 2D monolayer ice, i.e. the puckered square high-density ice (HDI) can form. The triple point of the LDI/liquid/HDI three-phase coexistence resembles that of the ice-I(h)/water/ice-III three-phase coexistence. More interestingly, when the LDI is under a strong compression at 200 K, it transforms into the HDI via a liquid intermediate state, the first direct evidence of Ostwald's rule of stages at 2D. The tensile limit of the 2D LDI and water are close to that of bulk ice-I(h) and laboratory water.

16.
Proc Natl Acad Sci U S A ; 103(52): 19664-7, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17170136

RESUMEN

We report six phases of high-density nano-ice predicted to form within carbon nanotubes (CNTs) at high pressure. High-density nano-ice self-assembled within smaller-diameter CNT (17,0) exhibits a double-walled helical structure where the outer wall consists of four double-stranded helixes, which resemble a DNA double helix, and the inner wall is a quadruple-stranded helix. Four other double-walled nano-ices, self-assembled respectively in two larger-diameter CNTs (20,0 and 22,0), display tubular structure. Within CNT (24,0), the confined water can freeze spontaneously into a triple-walled helical nano-ice where the outer wall is an 18-stranded helix and the middle and inner walls are hextuple-stranded helixes.


Asunto(s)
Hielo , Nanotubos/química , Simulación por Computador , Modelos Moleculares , Conformación Molecular
17.
J Phys Chem A ; 110(3): 908-12, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16419988

RESUMEN

Results of a combined photoelectron spectroscopy and first-principles density-functional study of SiN- clusters in the size range 20 or= 20. For 28

18.
Proc Natl Acad Sci U S A ; 101(9): 2664-8, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14981266

RESUMEN

Atomistic computer-simulation evidences are presented for the possible existence of one-dimensional silicon nanostructures: the square, pentagonal, and hexagonal single-walled silicon nanotubes (SWSNTs). The local geometric structure of the SWSNTs differs from the local tetrahedral structure of cubic diamond silicon, although the coordination number of atoms of the SWSNTs is still fourfold. Ab initio calculations show that the SWSNTs are locally stable in vacuum and have zero band gap, suggesting that the SWSNTs are possibly metals rather than wide-gap semiconductors.

19.
J Am Chem Soc ; 125(44): 13318-9, 2003 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-14583002

RESUMEN

Possible lowest-energy structures of Si21 and Si25 are found on the basis of the starting structures obtained via the global search for nearly identical low-energy Stillinger-Weber (SW) and modified-SW structures. The fact that the lowest-energy structures are spherical-like may suggest that the prolate-to-spherical-like structural transition for the silicon cluster Sin is likely to occur in the range of 21 < n < 25.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...