Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4219, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760340

RESUMEN

The limited durability of metal-nitrogen-carbon electrocatalysts severely restricts their applicability for the oxygen reduction reaction in proton exchange membrane fuel cells. In this study, we employ the chemical vapor modification method to alter the configuration of active sites from FeN4 to the stable monosymmetric FeN2+N'2, along with enhancing the degree of graphitization in the carbon substrate. This improvement effectively addresses the challenges associated with Fe active center leaching caused by N-group protonation and free radicals attack due to the 2-electron oxygen reduction reaction. The electrocatalyst with neoteric active site exhibited excellent durability. During accelerated aging test, the electrocatalyst exhibited negligible decline in its half-wave potential even after undergoing 200,000 potential cycles. Furthermore, when subjected to operational conditions representative of fuel cell systems, the electrocatalyst displayed remarkable durability, sustaining stable performance for a duration exceeding 248 h. The significant improvement in durability provides highly valuable insights for the practical application of metal-nitrogen-carbon electrocatalysts.

2.
Angew Chem Int Ed Engl ; 63(7): e202315119, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38129317

RESUMEN

Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.

3.
Natl Sci Rev ; 10(9): nwad162, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37900058

RESUMEN

Oxygen reduction reactions (ORRs) involve a multistep proton-coupled electron process accompanied by the conversion of the apodictic spin configuration. Understanding the role of spin configurations of metals in the adsorption and desorption of oxygen intermediates during ORRs is critical for the design of efficient ORR catalysts. Herein, a platinum-rare-earth-metal-based alloy catalyst, Pt2Gd, is introduced to reveal the role of spin configurations in the catalytic activity of materials. The catalyst exhibits a unique intrinsic spin reconfiguration because of interactions between the Gd-4f and Pt-5d orbitals. The adsorption and desorption of the oxygen species are optimized by modifying the spin symmetry and electronic structures of the material for increased ORR efficiency. The Pt2Gd alloy exhibits a half-wave potential of 0.95 V and a superior mass activity of 1.5 A·mgPt-1 in a 0.1 M HClO4 electrolyte, as well as higher durability than conventional Pt/C catalysts. Theoretical calculations have proven that the spin shielding effect of Gd pairs increases the spin symmetry of Pt-5d orbitals and adsorption preferences toward spin-polarized intermediates to facilitate ORR. This work clarifies the impact of modulating the intrinsic spin state of Pt through the interaction with the local high spin 4f orbital electrons in rare-earth metals, with the aim of boosting the spin-related oxygen reduction reaction, thus fundamentally contributing to the understanding of new descriptors that control ORR activity.

4.
Angew Chem Int Ed Engl ; 61(52): e202212341, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36254795

RESUMEN

Catalyst/support interaction plays a vital role in catalysis towards acidic oxygen evolution (OER), and the performance reinforcement is currently interpreted by either strain or electron donation effect. We herein report that these views are insufficient, where the dynamic evolution of the interface under potential bias must be considered. Taking Nb2 O5-x supported iridium (Ir/Nb2 O5-x ) as a model catalyst, we uncovered the dynamic migration of oxygen species between IrOx and Nb2 O5-x during OER. Direct spectroscopic evidence combined with theoretical computation suggests these migrations not only regulate the in situ Ir structure towards boosted activity, but also suppress its over-oxidation via spontaneously delivering excessive oxygen from IrOx to Nb2 O5-x . The optimized Ir/Nb2 O5-x thus demonstrated exceptional performance in scalable water electrolyzers, i.e., only need 1.839 V to attain 3 A cm-2 (surpassing the DOE 2025 target), and no activity decay during a 2000 h test at 2 A cm-2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...