Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Synth Syst Biotechnol ; 9(2): 359-368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38559426

RESUMEN

Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 â†’ 4)-acarbose and O-α-d-maltotriosyl-(1 â†’ 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38606659

RESUMEN

Depression constitutes a pervasive global mental health concern and stands as a principal determinant of elevated suicide rates worldwide. Recent empirical investigations have showcased the significant potential of visual art therapy (VAT) in ameliorating symptoms among individuals with depression. Nevertheless, specific studies have yielded findings marked by inconclusiveness, underscoring the imperative need for further research to comprehensively establish its efficacy. This study is a systematic review and meta-analysis of extant research, to ascertain the efficacy and effect size of VAT as an intervention for adults with depressive symptoms. A comprehensive search was conducted across 10 databases. The search encompassed articles published from the inception of these databases up until October 18, 2023. Two researchers screened the literature in accordance with inclusion and exclusion criteria and performed a thorough quality assessment. The original data and the data obtained from the literature were extracted for further analysis. The statistical analysis of the data was performed using Stata 17.0 software. fifteen studies were included, encompassing a total of 932 participants. The outcomes of meta-analysis unveiled a statistically significant effect of VAT in diminishing depressive symptoms among adults (SMD = -0.73; 95% CI, -1.07 to -0.39; p < 0.001; 15 randomised controlled trials (RCTs); low-quality evidence). The subgroup analysis indicated that VAT exhibited heightened effectiveness among adults below 65 years of age, with interventions lasting ≤12 weeks demonstrating superior efficacy. Additionally, sensitivity analysis underscored the robustness and reliability of the findings. VAT appears to alleviate depressive symptoms among adults. Existing research indicates that the effectiveness of VAT is influenced by factors, such as intervention population characteristics and intervention duration. However, to comprehensively probe the efficacy of VAT, future studies should strive for larger sample sizes, multicentre collaborations, and long-term follow-ups.

3.
Nat Metab ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609677

RESUMEN

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.

4.
Synth Syst Biotechnol ; 9(1): 134-143, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318491

RESUMEN

The biosynthesis of bioactive secondary metabolites, specifically antibiotics, is of great scientific and economic importance. The control of antibiotic production typically involves different processes and molecular mechanism. Despite numerous efforts to improve antibiotic yields, joint engineering strategies for combining genetic manipulation with fermentation optimization remain finite. Lincomycin A (Lin-A), a lincosamide antibiotic, is industrially fermented by Streptomyces lincolnensis. Herein, the leucine-responsive regulatory protein (Lrp)-type regulator SLCG_4846 was confirmed to directly inhibit the lincomycin biosynthesis, whereas indirectly controlled the transcription of SLCG_2919, the first reported repressor in S. lincolnensis. Inactivation of SLCG_4846 in the high-yield S. lincolnensis LA219X (LA219XΔ4846) increases the Lin-A production and deletion of SLCG_2919 in LA219XΔ4846 exhibits superimposed yield increment. Given the effect of the double deletion on cellular primary metabolism of S. lincolnensis, Plackett-Burman design, steepest ascent and response surface methodologies were utilized and employed to optimize the seed medium of this double mutant in shake flask, and Lin-A yield using optimal seed medium was significantly increased over the control. Above strategies were performed in a 15-L fermenter. The maximal yield of Lin-A in LA219XΔ4846-2919 reached 6.56 g/L at 216 h, 55.1 % higher than that in LA219X at the parental cultivation (4.23 g/L). This study not only showcases the potential of this strategy to boost lincomycin production, but also could empower the development of high-performance actinomycetes for other antibiotics.

5.
Biosens Bioelectron ; 249: 116004, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199083

RESUMEN

Cell envelope-targeting antibiotics are potent therapeutic agents against various bacterial infections. The emergence of multiple antibiotic-resistant strains underscores the significance of identifying potent antimicrobials specifically targeting the cell envelope. However, current drug screening approaches are tedious and lack sufficient specificity and sensitivity, warranting the development of more efficient methods. Genetic circuit-based whole-cell biosensors hold great promise for targeted drug discovery from natural products. Here, we performed comparative transcriptomic analysis of Streptomyces coelicolor M1146 exposed to diverse cell envelope-targeting antibiotics, aiming to identify regulatory elements involved in perceiving and responding to these compounds. Differential gene expression analysis revealed significant activation of VanS/R two-component system in response to the glycopeptide class of cell envelope-acting antibiotics. Therefore, we engineered a pair of VanS/R-based biosensors that exhibit functional complementarity and possess exceptional sensitivity and specificity for glycopeptides detection. Additionally, through promoter screening and characterization, we expanded the biosensor's detection range to include various cell envelope-acting antibiotics beyond glycopeptides. Our genetically engineered biosensor exhibits superior performance, including a dynamic range of up to 887-fold for detecting subtle antibiotic concentration changes in a rapid 2-h response time, enabling high-throughput screening of natural product libraries for antimicrobial agents targeting the bacterial cell envelope.


Asunto(s)
Técnicas Biosensibles , Streptomyces , Antibacterianos/farmacología , Antibacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Glicopéptidos/metabolismo , Factores de Transcripción/genética
6.
Biotechnol Biofuels Bioprod ; 16(1): 191, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072928

RESUMEN

BACKGROUND: While representing a model bacterium and one of the most used chassis in biomanufacturing, performance of Escherichia coli is often limited by severe stresses. A super-robust E. coli chassis that could efficiently tolerant multiple severe stresses is thus highly desirable. Sterols represent a featured composition that distinguishes eukaryotes from bacteria and all archaea, and play a critical role in maintaining the membrane integrity of eukaryotes. All sterols found in nature are directly synthesized from (S)-2,3-oxidosqualene. However, in E. coli, (S)-2,3-oxidosqualene is not present. RESULTS: In this study, we sought to introduce (S)-2,3-oxidosqualene into E. coli. By mining and recruiting heterologous enzymes and activation of endogenous pathway, the ability of E. coli to synthesize (S)-2,3-oxidosqualene was demonstrated. Further analysis revealed that this non-native chemical confers E. coli with a robust and stable cell membrane, consistent with a figurative analogy of wearing an "Iron Man's armor"-like suit. The obtained Iron Man E. coli (IME) exhibited improved tolerance to multiple severe stresses, including high temperature, low pH, high salt, high sugar and reactive oxygen species (ROS). In particular, the IME strain shifted its optimal growth temperature from 37 °C to 42-45 °C, which represents the most heat-resistant E. coli to the best of our knowledge. Intriguingly, this non-native chemical also improved E. coli tolerance to a variety of toxic feedstocks, inhibitory products, as well as elevated synthetic capacities of inhibitory chemicals (e.g., 3-hydroxypropionate and fatty acids) due to improved products tolerance. More importantly, the IME strain was effectively inhibited by the most commonly used antibiotics and showed no undesirable drug resistance. CONCLUSIONS: Introduction of the non-native (S)-2,3-oxidosqualene membrane lipid enabled E. coli to improve tolerance to various stresses. This study demonstrated the effectiveness of introducing eukaryotes-featured compound into bacteria for enhancing overall tolerance and chemical production.

7.
Commun Biol ; 6(1): 860, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596387

RESUMEN

Microbial bioactive natural products mediate ecologically beneficial functions to the producing strains, and have been widely used in clinic and agriculture with clearly defined targets and underlying mechanisms. However, the physiological effects of their biosynthesis on the producing strains remain largely unknown. The antitumor ansamitocin P-3 (AP-3), produced by Actinosynnema pretiosum ATCC 31280, was found to repress the growth of the producing strain at high concentration and target the FtsZ protein involved in cell division. Previous work suggested the presence of additional cryptic targets of AP-3 in ATCC 31280. Herein we use chemoproteomic approach with an AP-3-derived photoaffinity probe to profile the proteome-wide interactions of AP-3. AP-3 exhibits specific bindings to the seemingly unrelated deoxythymidine diphosphate glucose-4,6-dehydratase, aldehyde dehydrogenase, and flavin-dependent thymidylate synthase, which are involved in cell wall assembly, central carbon metabolism and nucleotide biosynthesis, respectively. AP-3 functions as a non-competitive inhibitor of all three above target proteins, generating physiological stress on the producing strain through interfering diverse metabolic pathways. Overexpression of these target proteins increases strain biomass and markedly boosts AP-3 titers. This finding demonstrates that identification and engineering of cryptic targets of bioactive natural products can lead to in-depth understanding of microbial physiology and improved product titers.


Asunto(s)
Actinobacteria , Productos Biológicos , Maitansina , Maitansina/farmacología
8.
Psychiatry Res ; 326: 115333, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37482046

RESUMEN

Subthreshold depression (StD) is a condition that significantly reduces the quality of life and increases the risk of developing major depressive disorder (MDD). In order to investigate the effectiveness of non-pharmacological interventions (NPIs) in preventing the onset of MDD and improving depressive symptoms in adults with StD (AStDs), we conducted a systematic search of nine databases and included a total of 15 studies. Standardized mean differences (SMDs) were calculated using random effects models. RoB2 tool and GRADEpro software were used to assess the methodological quality and evidence. Funnel plots, Egger's, and Begg's tests were used to analyze publication bias. Sensitivity, subgroup and meta-regression analyses were performed to explore potential sources of heterogeneity. The results showed that NPIs had a significant effect in preventing the onset of MDD and improving depressive symptoms. Subgroup analysis revealed that NPIs were particularly effective in general adult populations, during short-term follow-up (FU) periods, among pregnant women, and in universal prevention programs. The results were found to be robust and credible, as they were less sensitive to changes in the analysis method. Timely detection and treatment of StD is feasible and important, as it can effectively delay or prevent the onset of MDD.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Adulto , Femenino , Humanos , Embarazo , Depresión/complicaciones , Depresión/diagnóstico , Depresión/terapia , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/prevención & control , Calidad de Vida
9.
Nat Commun ; 14(1): 4366, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474569

RESUMEN

CRISPR-Cas immunity systems safeguard prokaryotic genomes by inhibiting the invasion of mobile genetic elements. Here, we screened prokaryotic genomic sequences and identified multiple natural transpositions of insertion sequences (ISs) into cas genes, thus inactivating CRISPR-Cas defenses. We then generated an IS-trapping system, using Escherichia coli strains with various ISs and an inducible cas nuclease, to monitor IS insertions into cas genes following the induction of double-strand DNA breakage as a physiological host stress. We identified multiple events mediated by different ISs, especially IS1 and IS10, displaying substantial relaxed target specificity. IS transposition into cas was maintained in the presence of DNA repair machinery, and transposition into other host defense systems was also detected. Our findings highlight the potential of ISs to counter CRISPR activity, thus increasing bacterial susceptibility to foreign DNA invasion.


Asunto(s)
Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Elementos Transponibles de ADN/genética , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Bacterias/genética , Genómica
10.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36978445

RESUMEN

We are currently facing two big global challenges: antibiotics shortage and multidrug resistance [...].

11.
Chem Asian J ; 18(7): e202201229, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36755200

RESUMEN

Pimaricin is a small polyene macrolide antibiotic and has been broadly used as an antimycotic and antiprotozoal agent in both humans and foods. As a thioesterase in type-I polyketide synthase, pimTE controls the 26-m-r macrolide main chain release in pimaricin biosynthesis. In this work, we sought to determine whether the 6-m-r hemiketal formation was linked to pimTE-catalyzed 26-m-r lactonization. Compared to non-hemiketal TEs, pimTE is characterized by an aspartic acid residue (D179) accessible to the U-turn motif in the acyl-enzyme intermediate. Both the covalent docking and molecular dynamics simulations demonstrate that the reactive conformations for macrocyclic lactonization are drastically promoted by the 6-m-r hemiketal. Moreover, the small-model quantum mechanistic calculations suggest that protic residues can significantly accelerate the 6-m-r hemiketal cyclization. In addition, the post-hemiketal molecular dynamic simulations demonstrate that hydrogen-bonding networks surrounding the substrate U-turn of the hairpin-shaped conformation changes significantly when the 6-m-r hemiketal is formed. In particular, the R-hemiketal intermediate is not only catalyzed by the D179 residue, but also twists the hairpin structure to the 26-m-r lactonizing pre-reaction state. By contrast, the S-hemiketal formation is unlikely catalyzed by D179, which twists the hairpin in an opposite direction. Our results propose that pimTE could be a bi-functional enzyme, which can synergistically catalyze tandem 6-m-r and 26-m-r formations during the main-chain release of pimaricin biosynthesis.


Asunto(s)
Antibacterianos , Natamicina , Humanos , Natamicina/química , Macrólidos , Simulación de Dinámica Molecular , Catálisis
12.
Chemistry ; 29(10): e202203127, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36408990

RESUMEN

Thiapyricins (TPC-A/B, 1 and 2), which are new metallophore scaffolds exhibiting selective divalent cation binding property, were produced in response to metal-deprived conditions by Saccharothrix sp. TRM_47004 isolated from the Lop Nor Salt Lake. TPCs represent a thiazolyl-pyridine skeleton of a calcium-binding natural product, calciphore, owing to the selectivity to calcium ions among diverse metal ions. The thiapyricins exhibited notable co-crystalline characteristics of the apo- and holo-forms with racemic enantiomers comprising a pair of space isomers in a Δ/Λ-form. Therefore, we postulated a mechanism for the four-hierarchical self-assembly of achiral natural products into chiral complexes. Furthermore, their metal-chelating trait aided the adaptation of the host during metal starvation by increasing the production of TPCs. This study presents a structural paradigm of a new calciphore, provides insight into the mechanism of natural product assembly, and highlights the causality between the production of the metallophore and metallic habitats.


Asunto(s)
Calcio , Iones
13.
Nat Commun ; 13(1): 6617, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329057

RESUMEN

Iterative enzymes, which catalyze sequential reactions, have the potential to improve the atom economy and diversity of industrial enzymatic processes. Redesigning one-step enzymes to be iterative biocatalysts could further enhance these processes. Carbamoyltransferases (CTases) catalyze carbamoylation, an important modification for the bioactivity of many secondary metabolites with pharmaceutical applications. To generate an iterative CTase, we determine the X-ray structure of GdmN, a one-step CTase involved in ansamycin biosynthesis. GdmN forms a face-to-face homodimer through unusual C-terminal domains, a previously unknown functional form for CTases. Structural determination of GdmN complexed with multiple intermediates elucidates the carbamoylation process and identifies key binding residues within a spacious substrate-binding pocket. Further structural and computational analyses enable multi-site enzyme engineering, resulting in an iterative CTase with the capacity for successive 7-O and 3-O carbamoylations. Our findings reveal a subclade of the CTase family and exemplify the potential of protein engineering for generating iterative enzymes.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo , Ingeniería de Proteínas
14.
Antibiotics (Basel) ; 11(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35625244

RESUMEN

The anti-coccidiosis agent salinomycin is a polyether antibiotic produced by Streptomyces albus BK3-25 with a remarkable titer of 18 g/L at flask scale, suggesting a highly efficient export system. It is worth identifying the involved exporter genes for further titer improvement. In this study, a titer gradient was achieved by varying soybean oil concentrations in a fermentation medium, and the corresponding transcriptomes were studied. Comparative transcriptomic analysis identified eight putative transporter genes, whose transcription increased when the oil content was increased and ranked top among up-regulated genes at higher oil concentrations. All eight genes were proved to be positively involved in salinomycin export through gene deletion and trans-complementation in the mutants, and they showed constitutive expression in the early growth stage, whose overexpression in BK3-25 led to a 7.20-69.75% titer increase in salinomycin. Furthermore, the heterologous expression of SLNHY_0929 or SLNHY_1893 rendered the host Streptomyces lividans with improved resistance to salinomycin. Interestingly, SLNHY_0929 was found to be a polyether-specific transporter because the titers of monensin, lasalocid, and nigericin were also increased by 124.6%, 60.4%, and 77.5%, respectively, through its overexpression in the corresponding producing strains. In conclusion, a transcriptome-based strategy was developed to mine genes involved in salinomycin export, which may pave the way for further salinomycin titer improvement and the identification of transporter genes involved in the biosynthesis of other antibiotics.

15.
Nucleic Acids Res ; 50(6): 3581-3592, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35323947

RESUMEN

Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.


Asunto(s)
Productos Biológicos , Streptomyces , Sistemas CRISPR-Cas , Clonación Molecular , Familia de Multigenes , Streptomyces/genética
16.
Interdiscip Sci ; 14(1): 233-244, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34699036

RESUMEN

D-amino acid introduction in peptides can enrich their biological activities and pharmacological properties as potential drugs. This achievement of stereochemical inversion usually owes to an epimerase or racemase. Interestingly, a unique bifunctional thioesterase (NocTE), which is incorporated in nonribosomal peptide synthetase (NRPS) NocA-NocB assembly line for the biosynthesis of monocyclic ß-lactam antibiotic nocardicin A, can control the generation of D-products with high stereochemical purity. However, the molecular basis of NocTE selectivity on substrates and products is still unclear. Herein, we constructed a series of systems with different peptides varying in stereochemistry, length, and composition to investigate the substrate selectivity. The studies on binding affinities and loading conformations elucidated the important roles of peptide length and ß-lactam ring in substrate selectivity. Through energy decomposition and interaction analyses, some key residues involved in substrate selectivity were captured. On the other hand, natural product undergoing epimerization was found to be liberated from the active pocket more easily in comparison with its diastereomer (epi-nocardicin G), explaining the superiority of nocardicin G. These results provide detailed molecular insights into the exquisite control of substrate and product scopes for NocTE, and encourage to diversification of substrates and final products for NRPS assembly line. The molecular insights into substrate and product selectivities of unique bifunctional thioesterase NocTE were illustrated via several molecular simulations and free energy calculations, contributing to expanding substrate and product scopes of nonribosomal peptide synthetases.


Asunto(s)
Lactamas , Péptido Sintasas , Antibacterianos/química , Lactamas/química , Lactamas/metabolismo , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Péptidos , Especificidad por Sustrato
17.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833880

RESUMEN

Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein-protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein-protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein-protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.


Asunto(s)
Mitomicina/biosíntesis , Mitomicina/química , Proteína Transportadora de Acilo/biosíntesis , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Aminobenzoatos/química , Antibacterianos/metabolismo , China , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidroxibenzoatos/química , Mitomicinas/química , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Streptomyces/metabolismo
18.
ACS Synth Biol ; 10(9): 2210-2221, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34470207

RESUMEN

Great efforts have been made to improve Streptomyces chassis for efficient production of targeted natural products. Moenomycin family antibiotics, represented by moenomycin (Moe) and nosokomycin, are phosphoglycolipid antibiotics that display extraordinary inhibition against Gram-positive bacteria. Herein, we assembled a completed 34 kb hybrid biosynthetic gene cluster (BGC) of moenomycin A (moe-BGC) based on a 24 kb nosokomycin analogue biosynthetic gene cluster (noso-BGC). The heterologous expression of the hybrid moe-BGC in Streptomyces albus J1074 achieved the production of moenomycin A in the recombinant strain LX01 with a yield of 12.1 ± 2 mg/L. Further strong promoter refactoring to improve the transcriptional levels of all of the functional genes in strain LX02 enhanced the production of moenomycin A by 58%. However, the yield improvement of moenomycin A resulted in a dramatic 38% decrease in the chassis biomass compared with the control strain. To improve the weak physiological tolerance to moenomycin A of the chassis, another copy of the gene salb-PBP2 (P238N&F200D), encoding peptidoglycan biosynthetic protein PBP2, was introduced into the chassis strain, producing strain LX03. Cell growth was restored, and the fermentation titer of moenomycin A was 130% higher than that of LX01. Additionally, the production of moenomycin A in strain LX03 was further elevated by 45% to 40.0 ± 3 mg/L after media optimization. These results suggested that the adaptive optimization strategy of strong promoter refactoring in the BGC plus physiological tolerance in the chassis was an efficient approach for obtaining the desired natural products with high titers.


Asunto(s)
Bambermicinas/biosíntesis , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Bambermicinas/química , Productos Biológicos/química , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Familia de Multigenes/genética , Plásmidos/genética , Plásmidos/metabolismo , Streptomyces/química , Streptomyces/genética
19.
Cell Discov ; 7(1): 15, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727528

RESUMEN

Endowing mesophilic microorganisms with high-temperature resistance is highly desirable for industrial microbial fermentation. Here, we report a cold-shock protein (CspL) that is an RNA chaperone protein from a lactate producing thermophile strain (Bacillus coagulans 2-6), which is able to recombinantly confer strong high-temperature resistance to other microorganisms. Transgenic cspL expression massively enhanced high-temperature growth of Escherichia coli (a 2.4-fold biomass increase at 45 °C) and eukaryote Saccharomyces cerevisiae (a 2.6-fold biomass increase at 36 °C). Importantly, we also found that CspL promotes growth rates at normal temperatures. Mechanistically, bio-layer interferometry characterized CspL's nucleotide-binding functions in vitro, while in vivo we used RNA-Seq and RIP-Seq to reveal CspL's global effects on mRNA accumulation and CspL's direct RNA binding targets, respectively. Thus, beyond establishing how a cold-shock protein chaperone provides high-temperature resistance, our study introduces a strategy that may facilitate industrial thermal fermentation.

20.
Appl Microbiol Biotechnol ; 105(2): 695-706, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394151

RESUMEN

Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.


Asunto(s)
Actinobacteria , Actinomycetales , Maitansina , Maitansina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...