Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35888268

RESUMEN

Microstructure is an important factor that affects the mechanical properties and service life of forgings. Through the full study of the formability of the material, the internal microstructure of the material can be effectively controlled. In order to accurately describe the formability of materials during thermal processing, 3D hot processing maps containing strains were established in this paper, and the 3D hot processing maps were coupled with the finite element method for simulation calculation. The Cr5 alloy steel was subjected to unidirectional thermal compression at a strain rate of 0.005-5 s-1 and temperature range of 900-1200 °C on a Gleeble-1500D thermal simulation machine, in order to obtain the date of true stress and strain. Based on the dynamic material model (DMM), the 3D processing maps of Cr5 alloy steel was established, and the 3D processing maps were associated with the analysis of microstructure evolution during hot deformation. The results show that the optimum thermal deformation conditions are as follows: temperature of 1000-1125 °C, strain rate of 0.01-0.2 s-1, and peak power dissipation of 0.41. The 3D processing maps were coupled with the finite element software FORGE® to simulate the hot working process, and the distribution and change of power dissipation and flow instability domain on the metal deformation under different thermal deformation conditions were obtained. The comparison between the simulation results and metallographic images of typical regions of metal deformation shows that they are in good agreement. This method can effectively predict and analyze the formability of materials during hot processing and provide guidance for practical industrial production.

2.
Materials (Basel) ; 15(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683233

RESUMEN

To effectively control and predict crack defects in the high-temperature forming process of Cr5 alloy steel, based on the traditional Lemaitre damage model, a new high-temperature damage model of Cr5 alloy steel was proposed which considered the change of material elastic modulus with temperature, the influence of material hydrostatic pressure as well as temperature and strain rate on material damage. Because Cr5 alloy steels are usually forged at high temperatures, tensile testing is an important method to study the damage behaviour of materials. Through the high-temperature tensile test and elastic modulus measurement test of the Cr5 alloy steel, the stress-strain curves and the relationship curves of the elastic modulus value with the temperature of Cr5 alloy steel under different temperatures and strain rates were obtained. A new high-temperature damage model of Cr5 alloy steel was built by introducing the Zener-Hollomon coefficient considering the influence of temperature and strain rate. The established high-temperature damage model was embedded in Forge® finite element software through the program's secondary development method to numerically simulate the experimental process of Cr5 alloy steel. Comparing the difference between the displacement-load curves of the numerical simulation and the actual test of the tensile process of the experimental samples, the correlation coefficient R2 is 0.987 and the difference between the experimental value and the simulated value of the tensile sample elongation at break is 1.28%. The accuracy of the high-temperature damage model of Cr5 alloy steel established in this paper was verified. Finally, the high-temperature damage map of Cr5 alloy steel was constructed to analyse the variation law of various damage parameters with the temperature and strain rate of the high-temperature damage model of Cr5 alloy steel.

3.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268978

RESUMEN

Titanium alloy is widely applied in aerospace, medical, shipping and other fields due to its high specific strength and low density. The purpose of this study was to analyze the formability of Ti6Al4V alloys at elevated temperatures. An accurate constitutive model is the basic condition for accurately simulating the plastic forming of materials, and it is an important basis for optimizing the parameters of the hot forging forming process. In this study, the optimization algorithm was used to accurately identify the high-temperature constitutive model parameters of Ti6Al4V titanium alloy, and the hot working diagram was established to optimize the hot forming process parameters. The optimal forming conditions of Ti6Al4V titanium alloy are given. Ti6Al4V alloy was subjected to high-temperature compression tests at 800-1000 °C and at strain rates of 0.01-5 s-1 on a Gleeble-1500D thermal/mechanical simulation machine. Each parameter of the Hansel-Spittel constitutive model was taken as an independent variable, and the accumulated error between the stress calculated by the constitutive model and the stress obtained by experimentation was used as an objective function. Based on response surface methodology, an inverse optimization method for identifying the parameters of the high-temperature constitutive model of Ti6Al4V alloy is proposed in this paper. An orthogonal test design was adopted to obtain sample point data, and a third-order response surface approximate model was established. The genetic algorithm (GA) was applied to reversely optimize the parameters of the constitutive model. To verify the accuracy of the optimized constitutive model, the average absolute relative error (AARE) and correlation coefficient (R) were used to evaluate the reliability of optimized constitutive model. The R value of the model was 0.999, and the AARE value was 0.048, respectively, indicating that the established high-temperature constitutive model for Ti6Al4V alloy has good calculation accuracy. The flow stress behavior of the material could be accurately delineated. Meanwhile, in order to study the formability of Ti6Al4V alloy, the hot processing map of the alloy, based on a dynamic material model, was established in this paper. The optimum hot working domains of the Ti6Al4V alloy were determined within 840-920 °C/0.01-0.049 s-1 and 940-980 °C/0.11-1.65 s-1; the hot processing map was verified in combination with the microstructure, and the fine and equiaxed grains and a large amount of ß phase could be found at 850 °C/0.01 s-1.

4.
Materials (Basel) ; 14(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540797

RESUMEN

X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE® to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA