Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063890

RESUMEN

Friction and wear are the main failure sources of face seals. When the surfaces of sealing rings exhibit greater roughness, the level of friction might increase and lead to sealing failure. Therefore, in this paper, based on the elastic contact hypothesis of rough and wavy surfaces and the influence of temperature on the elastic modulus of materials, a thermoelastic contact lubrication model of a gas-lubricated end seal is established. The novelty and advantage of this study is that it takes the effect of surface roughness into consideration during thermoelastic analysis of gas-lubricated seals. The film pressure, temperature, contact force and deformation of a gas spiral groove-faced seal are numerically determined. The influence of surface roughness on the contact distribution, deformation and temperature of the end-face seal at different speeds and pressures is analyzed. The film thickness increases as the rotational speed increases from 1 rpm to 2000 rpm, while the contact pressure sharply decreases from 0.25 kPa to 0. The analysis shows that the roughness contact mainly happens on the inner side of the rings due to convergent distortion of the seal faces, which easily causes partial wear of the seal faces. Moreover, it can also be found that the spiral grooves on the sealing surface can produce obvious hydrodynamic pressure effect due to the function of shear speed when the speed increases to 2000 rpm, while the film temperature increases from 293.3 K to about 306 K. The greater surface roughness results in a larger temperature rise under low-rotational-speed and lower-seal-pressure conditions, which further increases the risk of severe wear or even failure of the seal faces.

2.
Materials (Basel) ; 17(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893770

RESUMEN

Cavitation in micro-scale lubricating film could be determined by the fluid's thermal properties, which impacts the hydrodynamic lubrication capacity dramatically. This study aimed to novelly investigate the impact of the thermal cavitation effect on the hydrodynamic performance of liquid face seals, employing the compressible cavitation model, viscosity-temperature effect, and energy equation. The finite difference method was adopted to analyze the thermal cavitation by calculating the pressure and temperature profiles of the lubricating film. The working conditions and geometric configuration of liquid face seals under different thermal cases were further studied to explore their effects on sealing performance. The results showed that thermal cavitation could reduce the temperature difference of liquid film at high speeds, and cavitation would be weakened under temperature gradients, which further dropped off the hydrodynamic performance. Contrary to the leakage rate, the opening forces tended to be lower with the increasing seal pressure and film thickness under high-temperature gradients. Furthermore, apart from the spiral angle of grooves, the hydrodynamic performance exhibited significant variation with increasing groove depth, number, and radius at high-temperature gradients, which meant that the thermal cavitation effect should be considered in the design of geometric grooves to obtain better hydrodynamic performance.

3.
Materials (Basel) ; 17(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793493

RESUMEN

The adhesive force between two contact surfaces often leads to an increase in the friction force of the rubber seal O-ring after a certain dwell time, forming dwell time effects and affecting the reliability of sealing. The dwell time effect may result in substantial instability with respect to the frictional behavior of rubber O-rings, which needs to be carefully taken into account in the design of rubber seals. Therefore, in this paper, the dwell time effect of the friction force was studied experimentally for intermittent reciprocating rubber seal O-rings coupled with stainless steel 316L and a sealing air medium. The friction force of three kinds of rubber materials, including fluorine rubber (FPM), silicone rubber (SI), and nitrile rubber (NBR), was measured under different dwell times, compression ratios, and seal pressure. The results showed that there was a rolling frictional force, and the second peak value of the frictional force caused by the O-ring's rolling under shear action and after the maximum static frictional force was observed at the starting stage of reciprocating motion. For FPM O-rings, the rolling friction force was much greater than the maximum static frictional force at about four times the value of the compression ratio at 9% and seal pressure at 0; moreover, the force was much greater at greater compression ratios. The dwell time effect was significant in the friction forces of rubber O-rings. The friction force increases with an increase in dwell time. The increase in maximum static friction force exceeded 50% after 5 dwell days. The increase in seal pressure led to the disappearance of the rolling friction feature and the rapid increase in friction during the starting stage. Under gas seal pressure conditions, the dwell time effect still led to a significant increase in friction force. The obtained results might provide guidance for the material selection of sealing designs.

4.
Materials (Basel) ; 17(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541597

RESUMEN

The property of vaporization phase transition in liquid oxygen face seals is a key factor affecting the stability of mechanical face seals in many fields, especially under cryogenic conditions. Here, a numerical model based on the saturated vapor pressure is established to investigate the vaporization phase transition property of liquid oxygen sealing film. The novelty of this model is to take the influence of heat transfer and face distortions into consideration at the same time. The pressure and temperature distributions as well as face distortions are calculated, and then the property of vaporization phase transition and sealing performance are analyzed. It is found that spiral grooves may lead to the complex film temperature distributions and irregular vaporization distributions. With the increase in seal temperature and decrease in seal pressure, the vaporization area extends from the low-pressure side to the grooves area, and the vaporization rate increases rapidly. The more important thing is that the vaporization often brings a drastic fluctuation and non-monotonic change in opening force. Specifically, with the increase inin seal temperature from 55 K to 140 K, the opening force fluctuates violently, and the fluctuation range is more than 50%, showing an obvious instability. Finally, this study provides a design range of pressure and temperature values for liquid oxygen face seals. In these ranges, this kind of face seals can have a stable operation, which is beneficial to the practice engineering related to the complex properties of sealing fluid.

5.
Materials (Basel) ; 16(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005060

RESUMEN

The Brayton cycle system, as a closed cycle working under high-temperature, high-pressure and high-speed conditions, presents significant prospects in many fields. However, the flow behavior and energy efficiency of supercritical CO2 is severely influenced by the structures of face seals and the sealing temperature, especially when the sealing gas experiment is the supercritical transformation process. Therefore, a numerical model was established to investigate the high-temperature flow behavior and energy consumption of face seals with different surface grooves. The effects of the operation parameters and groove structure on the temperature distribution and sealing performance are further studied. The obtained results show that the supercritical effect of the gas film has a more obvious influence on the flow velocity uθ than ur. Moreover, it can be found that the temperature distribution, heat dissipation and leakage rate of the gas face seals present a dramatic change when the working condition exceeds the supercritical point. For the spiral groove, the change rate of heat dissipation becomes larger, from 3.6% to 8.1%, with the increase in sealing pressure from 15 to 50 MPa, when the temperature grows from 300 to 320 K. Meanwhile, the open force maintains a stable state with the increasing temperature and pressure even at the supercritical point. The proposed model could provide a theoretical basis for seal design with different grooves on the supercritical change range in the future.

6.
Materials (Basel) ; 16(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110090

RESUMEN

In order to obtain the leakage characteristics of an upstream pumping face seal with inclined ellipse dimples under high-temperature and high-speed liquid lubricating conditions, a thermo-hydrodynamic lubricating model is developed. The novelty of this model is that it takes the thermo-viscosity effect and cavitation effect into account. The influence of operating parameters, such as rotational speed, seal clearance, seal pressure, ambient temperature and structural parameters, such as dimple depth, inclination angle, slender ratio and dimple number on the opening force and leakage rate, is numerically calculated. The results obtained show that the thermo-viscosity effect makes the cavitation intensity decrease noticeably, leading to an increase in the upstream pumping effect of ellipse dimples. Moreover, the thermo-viscosity effect may make both the upstream pumping leakage rate and opening force increase by about 10%. It can also be found that the inclined ellipse dimples can produce an obvious upstream pumping effect and hydrodynamic effect. Based on the reasonable design of the dimple parameter, not only can the sealed medium achieve zero leakage, but the opening force can also increase by more than 50%. The proposed model has the potential to provide the theoretical basis for and guide the future designs of upstreaming liquid face seals.

7.
Materials (Basel) ; 16(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36984163

RESUMEN

The force equilibrium and moment equilibrium play a significant role on the sealing performance of gas split floating ring seals. A small deflection angle may generate seriously wear on sealing surface and cause seal failure. Therefore, the thermo-hydrodynamic lubrication analysis of gas split floating ring seal with Rayleigh grooves is investigated considering the deflection angle and frictional heat of surface contact, which is beneficial to grasp the hydrodynamic characteristics and rules under high-temperature and high-speed conditions. Pressure and temperature distributions of sealing rings are numerically calculated for the cases with different deflection angle, rational speed, seal pressure and ambient temperature. Then, the hydrodynamic effect and sealing performance are analyzed. The obtained results show that, the surface Rayleigh step grooves do not present obvious hydrodynamic effect when split seal ring has no deflection. While, a significant hydrodynamic effect can be obtained when the split seal ring presents a deflection angle about dozens of micro radians. Here, a 10% increase of opening force is achieved when the deflection angle reaches 80 µrad in the case of speed 30,000 r/min and seal pressure 0.2 MPa. Moreover, the hydrodynamic effect becomes obvious with increasing deflection angle as well as rotational speed. Meanwhile, the growth of rotational speed results in an obvious increase of film temperature. The increase of ambient temperature has a significant influence on the decrease of leakage rate. When the ambient temperature increases from 340 K to 540 K, the leakage rate reduces exceeding 50%, however, it does not present obvious effect on the opening force. The proposed model has the potential to provide the theoretical basis and design guidance for surface grooves of gas split floating ring seal in the future.

8.
Materials (Basel) ; 15(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431426

RESUMEN

At solid-liquid interfaces, charged particles within the electric double layer (EDL) are acted on by the electrostatic force, which may affect cell absorption and surface wettability. In this study, a model of the electrostatic force and surface tension of textured surfaces was presented. Then, the growth and adhesion of Murine osteoblasts (MC3T3-E1) cells on laser-ablated micro-square-textured Ti-6Al-4V surfaces were studied to demonstrate the use of a laser-processed texture to effectively improve bioactivity. Three different micro-square-textured hydrophilic surfaces, presenting lower contact angles of 19°, 22.5°, and 31.75° compared with that of a smooth surface (56.5°), were fabricated using a fiber-optic laser. Cellular morphology and initial cell attachment were analyzed by field emission scanning electron microscopy (SEM) and fluorescence microscopy, respectively. The results show that the electrostatic force not only made the textured surface more hydrophilic but also made the cells tend to adhere to the edges and corners of the protruding convexes. Cell morphology analysis also showed that cells would prefer to grow at the edges and corners of each micro-square convex protrusion. The laser-treated surfaces were more conducive to rapid cell growth and adhesion, and cells were preferentially attached on the hydrophilic-textured surfaces. Electrostatic force may be an important factor in effectively improving the bioactivity of Ti-6Al-4V surfaces, and the presence of more surface grooves would be more conducive to improving the bioactivity of cells.

9.
Materials (Basel) ; 15(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35208020

RESUMEN

For gas-liquid medium isolation seals in aero-engines, the upstream pumping function of directional grooves provides an effective way to realize the design of longer service life and lower leakage rate. However, this produces a new problem for gas-liquid mass transfer in the sealing clearance. This study establishes an analytical model to investigate the gas-liquid mass transfer behavior and the change rule for the opening force of mechanical face seals with elliptical grooves. Compared with traditional studies, this model considers not only the gas-liquid transfer but also the cavitation effect. The results obtained show that with the increase of rotational speed, the gas medium transferred from the inner low-pressure side to the outer high-pressure side. In addition, the leakage rate of the liquid medium from the outer high-pressure side to the inner low-pressure side increased with the growth of sealing clearance, rotational speed and seal pressure. The upstream pumping effect of the gas medium with elliptical grooves not only led to a state of gas-liquid mixed lubrication in the sealing surfaces, but also significantly increased the opening capacity of the seal face. This research may provide a reasonable basis for the design of upstream pumping mechanical face seals.

10.
Materials (Basel) ; 14(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072014

RESUMEN

Thermoelastohydrodynamic lubrication behaviors of helium gas T-groove face seals are numerically simulated under conditions of low temperature and high pressure, with the consideration of real-gas properties including compressibility coefficient, viscosity, and heat capacity. It is found that helium gas T-groove face seal presents a sharp divergent deformation at low temperature and high pressure, which makes the opening performance weaken and the leakage rate increase. This result is obviously different from the case of high-temperature gas face seals. As the sealing temperature drops from 300 K to 150 K, the leakage rate increases about 17% and the opening force decreases about 15%. Moreover, with the growth of rotational speed, both the outlet film pressure and the sealing performance present a non-monotonic trend. Specifically, while the rotating speed of moving ring raises from 3000 to 30,000 r·min-1, the leakage rate changes more than 30%, and the opening force is reduced about 10%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA