Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714131

RESUMEN

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Asunto(s)
Alginatos , Planta de la Mostaza , Zeolitas , Alginatos/química , Alginatos/farmacología , Zeolitas/química , Zeolitas/farmacología , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/química , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Porosidad , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ácido Glucurónico/química , Nanocompuestos/química , Difracción de Rayos X , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo
2.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446458

RESUMEN

The random lamellae of the synthetic CP were synthesized with a hydrothermal approach using o-Phenylenediamine (OPD) as a modifier. The decreases in the order degree of the CP synthesized in the presence of the OPD resulted from the loss of long-range order in a certain direction. Subsequently, the ultrasonic treatment and washing were conducive to further facilitate the disordered arrangements of its lamellae. The possible promotion mechanism regarding the nucleation and growth behaviors of the sol-gel particles was proposed. The fractal evolutions of the aluminosilicate species with crystallization time implied that the aluminosilicate species became gradually smooth to rough during the crystallization procedures since the amorphous structures transformed into flower-like morphologies. Their gas adsorption and separation performances indicated that the adsorption capacity of CO2 at 273 K reached up to 2.14 mmol·g-1 at 1 bar, and the selective factor (CO2/CH4) up to 3.4, much higher than that of the CPs synthesized without additive OPD. The breakthrough experiments displayed a longer breakthrough time and enhancement of CO2 uptake, showing better performance for CO2/CH4 separation. The cycling test further highlighted their efficiency for CO2/CH4 separation.

3.
Molecules ; 28(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049651

RESUMEN

Fe(III)-modified clinoptilolites (Fe-CPs) were prepared by hydrothermal treatment. The collapse of the heulandite skeletons was avoided by adjusting the pH value using HCl solution, showing the maximum relative crystallinity of the Fe-CPs at an optimal pH of 1.3. The competitive exchange performances between Fe3+ ions and H+ with Na+ (and K+) suggested that the exchange sites were more easily occupied by H+. Various characterizations verified that the hydrothermal treatments had a strong influence on the dispersion and morphology of the isolated and clustered Fe species. The high catalytic activity of the oxygen evolution reaction indicated the insertion of Fe3+ into the skeletons and the occurrences of isomorphic substitution. The fractal evolutions revealed that hydrothermal treatments with the increase of Fe content strongly affected the morphologies of Fe species with rough and disordered surfaces. Meanwhile, the Fe(III)-modified performances of the CPs were systematically investigated, showing that the maximum Fe-exchange capacity was up to 10.6 mg/g. Their thermodynamic parameters and kinetic performances suggested that the Fe(III)-modified procedures belonged to spontaneous, endothermic, and entropy-increasing behaviors. Finally, their adsorption capacities of CO2 at 273 and 298 K were preliminarily evaluated, showing high CO2 adsorption capacity (up to 1.67 mmol/g at 273 K).

4.
Polymers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36771896

RESUMEN

The pH-responsive fluorescent P(1,8-naphthalic anhydride (NA)-acrylic acid (AA)) matrix was successfully prepared by a doping method using poly(acrylic acid) (PAA) as a pH-sensitive polymer and NA as a fluorescent tracer. The fluorescent behaviors of the used NA dispersed in PAA frameworks were demonstrated based on fractal features combined with various characterizations, such as small-angle X-ray scattering (SAXS) patterns, photoluminescence (PL) spectra, scanning electron microscope (SEM) images, thermogravimetry (TG) profiles, Fourier transform infrared (FT-IR) spectroscopy, and time-resolved decays. The effects of NA-doping on the representative fluorescent P(NA-AA) were investigated, in which the fluorescent performance of the doped NA was emphasized. The results indicated that aggregated clusters of the doped NA were gradually serious with an increase in NA doping amount or extension of NA doping time, accompanied by an increase in mass fractal dimension (Dm) values. Meanwhile, the doped NA presented stable fluorescent properties during the swelling-shrinking process of PAA. Ibuprofen (IBU) was used as a model drug, and fractal evolutions of the obtained P(NA-AA) along with the drug loading and releasing behaviors were evaluated via SAXS patterns, in which the drug-loaded P(NA-AA) presented surface fractal (Ds) characteristics, while the Dm value varied from 2.94 to 2.58 during sustained drug-release in pH 2.0, indicating occurrences of its structural transformation from dense to loose with extension of IBU-releasing time. Finally, the cytotoxicity and cellular uptake behaviors of the obtained P(NA-AA) were preliminarily explored. These demonstrations revealed that the resultant P(NA-AA) should be a potential intelligent-responsive drug carrier for targeted delivery.

5.
Langmuir ; 38(48): 14644-14655, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36427194

RESUMEN

The amine (NH2)-functionalized UiO-66 was successfully anchored on disorderly layered clinoptilolite (CP) via surfactant (poly(ethylene glycol) (PEG) and poly(vinylpyrrolidone) (PVP))-assisted induction. The structural features and physicochemical parameters of the resultant UiO-66-on-CPs were characterized by powder X-ray diffraction (XRD) patterns, scanning/transmission electron microscopy (SEM/TEM) images, Fourier transform infrared (FT-IR) spectra, N2 sorption isotherms, and small-angle X-ray scattering (SAXS) patterns. The results demonstrated that the growth of UiO-66-NH2 nanoparticles facilitated the disorder degree of the crystal plane of CP along the a-axis, while the addition of PEG in the hydrothermal synthesis system of CP was conducive to the formation of a flower-like microstructure and the introduction of PVP was beneficial to the nucleation and growth of UiO-66-NH2 nanoparticles with a small size (40 nm) on the surfaces of the obtained CP-PEG lamellas. Finally, the gas-selective adsorption and separation performances of CO2 and CH4 were evaluated using the synthesized disorderly layered UiO-66-on-CP heterostructures as adsorbents, indicating that the NH2-functionalized UiO-66-on-CP exhibited a superior selective factor (3.66) of CO2/CH4. These results elucidated that the proposed approach is a promising strategy for constructing MOF-on-zeolite heterostructures, which may open an avenue to expand CP application and improve their performance.

6.
RSC Adv ; 12(17): 10800-10814, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35424978

RESUMEN

Three kinds of the bipyridine-proline chiral ligands as highly active species were successfully introduced on Zn-modified mesoporous silica nanomaterials (BMMs, MCM-41, and SBA-15) via the covalent attachment and coordination methods. Their microstructural features and physicochemical properties were extensively characterized via XRD patterns, SEM/TEM images, TGA profiles, FT-IR and UV-Vis spectra. In particular, their fractal features, the pair distance distribution function, and the Porod plots were evaluated thoroughly on the basis of the SAXS data. Meanwhile, their catalytic performances for asymmetric aldol reactions between p-nitrobenzaldehyde and cyclohexanone were evaluated. The results indicated that the bimodal mesoporous BMMs-based samples with short worm-like mesoporous channels possessed both mass and surface fractal features, whereas the MCM-41- and SBA-15-based samples with long-range ordered structures only showed surface fractal features. The influences of various reaction parameters, including the textures of the mesoporous silicas, the structures of the used chiral ligands, and the molecular volumes of aldehydes, on the catalytic activities (yield) and stereoselectivities (dr and ee) were investigated thoroughly. The results showed satisfactory activities (yields) and better stereoselectivity (dr and ee) in comparison with the homogeneous catalytic system using Z as the catalysts. In particular, the 3rd recycle catalytic performances of the Z-immobilized heterogeneous catalysts retained high catalytic yields (around 80%) and ee values of 28%. These phenomena were well interpreted by the essential relationships between the fractal characteristics of these heterogeneous catalysts and their catalytic activities.

7.
ACS Appl Mater Interfaces ; 14(5): 6885-6893, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076197

RESUMEN

The particle size of co-catalysts significantly affects the activity of semiconductors in photocatalysis. Herein, we report that the photocatalytic H2 evolution (PHE) activity of a visible light responsive covalent organic framework (COF) layer supported on SiO2 nanoparticles was greatly promoted from 47.7 to 85.5 µmol/h by decreasing the particle size of the Pd co-catalyst from 3.3 nm to single atoms/clusters. A PHE rate of 156 mmol gCOF-1 h-1 and apparent quantum efficiency up to 7.3% were achieved with the Pd SAs/Cs co-catalyst. The relationship between the activity of Pd in H2 dissociation, proton reduction, and PHE rate suggests that the promotion effect of Pd SAs/Cs is mainly attributed to their enhancement in charge separation of COF layers rather than proton reduction. Furthermore, a photoactive film was fabricated and steady production of H2 was achieved under visible light irradiation and static conditions. The optimization of the particle size of co-catalysts provides an efficient method for enhancing the photocatalytic activity of semiconductors.

8.
R Soc Open Sci ; 8(2): 201967, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972874

RESUMEN

In this study, we synthesized pH-sensitive thiamethoxam-3-(2-aminoethylamino) propyl-bimodal mesoporous silica (P/Thi-NN-BMMs) nanoparticles (NPs). We used this bimodal mesoporous silica (BMMs) mesoporous material as a carrier based on the principle of free radical polymerization. The size of the P/Thi-NN-BMMs NPs was about 891.7 ± 4.9 nm, with a zeta potential of about -25.7 ± 2.5 mV. X-ray powder diffraction analysis, N2-sorption measurements and thermogravimetric analysis indicated that thiamethoxam (Thi) was loaded into the pores of the mesoporous structure and that the mesopore surface was coated with polyacrylic acid (PAA). The loading rate of P/Thi-NN-BMMs was about 25.2%. The controlled-release NPs had excellent anti-photolysis performance and storage stability. The NPs showed significant pH sensitivity, and the Thi release rate in pH 10.0 phosphate buffer was higher than those in pH 7.4 and pH 3.0 phosphate buffers. We described the sustained-release curves according to the Weibull model. The relative toxicity of P/Thi-NN-BMMs against peach aphid was 1.44 times that of commercial Thi. This provides a promising instrument for effective insect control and environment protection.

9.
Chem Asian J ; 16(3): 224-231, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33332707

RESUMEN

Zn(II) can efficiently promote the catalytic performance of imidazolium salt ionic liquids (imi-ILs) for the chemical fixation of CO2 into epoxides. To obtain sustainability, immobilized bifunctional catalysts containing both imi-ILs and Zn(II) were prepared using bimodal mesoporous silica (BMMs) as carrier, through grafting of Zn(OAc)2 and 1-(trimethoxysilyl)propyl-3-methylimidazolium chloride (Si-imi) separately in the nanopores. The catalysts, named as BMMs-Zn&ILs, were identified as efficient catalysts for cycloaddition reaction of CO2 into epoxides under solvent-free conditions. BMMs-Zn&ILs showed good catalytic activity, which increased with the increase of the molar ratio of Zn(II) to Si-imi. As a comparison, different catalytic systems including homogeneous imi-IL, BMMs-ILs and BMMs-Zn were studied to demonstrate different cooperation behaviors. Furthermore, the kinetics studies of homogeneous and heterogeneous bifunctional catalysts were employed to confirm the differences, as well as to support the proposed cooperative catalysis mechanism in the nanopores.

10.
RSC Adv ; 11(49): 30646-30656, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35479868

RESUMEN

Nanoprecursors used as a structural promoter (SP) were prepared by a hydrothermal method and named sol-SP. After centrifugation, the supernatant and precipitate were denoted as solution-SP and solid-SP, respectively. The effect of the additive amount on the structures and properties of the synthesized clinoptilolite was investigated using various characterization techniques. The activation energies of crystallization kinetics during induction and growth periods were calculated. The results showed that the induction period is the control step during the synthesis of clinoptilolite, while additive sol-SP or solid-SP was beneficial to shorten the induction period and therefore enhance the formation of the crystal nucleus. When their pre-crystallization time was too long or the additive amount was too much, the impure phase (phillipsite) in the synthesized clinoptilolite was easily generated. Although the addition of solution-SP had no obvious effect on the induction period, it promoted the growth of crystals after nucleation. Finally, the adsorption performances for CO2 and CH4 were preliminarily assessed using synthetic clinoptilolite as the adsorbent, showing the promising application for the separation of CO2/CH4.

11.
RSC Adv ; 11(29): 17849-17859, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480182

RESUMEN

TiO2-supported clinoptilolite (TiO2/CP) was synthesized in the presence of F- ions. Various characterizations demonstrated that the particle size of loaded TiO2 increased linearly with an increase in the temperature and concentration of F- ions. In particular, the additive F- ions were favored to produce the mutually independent co-exposed {001} and {101} facets of loaded TiO2, while TiO2/CPs synthesized in the absence of F- ions were dominated by the thermodynamically stable {101} facet. As photocatalysts for the removal of crystal violet or methyl orange dyes under UV-irradiation in aqueous solutions, TiO2/CPs (ACP6) synthesized in the presence of F- ions significantly improved the degradation efficiency, as compared to ACP3 obtained in the absence of F- ions. These results elucidated that the highly energetic {001} exposed facet, large particle size and fine dispersion of loaded TiO2 in TiO2/CP accounts for its best photocatalytic performance. The effected mechanism of operational parameters on the degradation performances is proposed.

12.
RSC Adv ; 10(38): 22809-22818, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35514574

RESUMEN

Hydrophobic clinoptilolite (CP) was successfully synthesized via a silanization method using methyltriethoxysilane (MTS) or diethoxydimethylsilane (DMTS) as silane coupling agents. The structural and textural properties of the resultant hydrophobic CP were characterized using various methods. The effect of the amount of MTS or DMTS additive on the induction (nucleation) and growth of CP were also investigated, and the apparent activation energy values for induction and growth periods were calculated, suggesting that the induction period is kinetically controlled, while the rapid growth process is thermodynamically controlled. Meanwhile, DMTS modification enhanced the hydrophobicity of CP compared with its MTS-modified counterpart and pure CP. Finally, various ZnO-supported CPs were used as photocatalysts for the removal of crystal violet from aqueous solution, demonstrating that ZnO/hydrophobic CP has the largest adsorption capacity and best removal performance. These results suggest that hydrophobic CP, as an adsorbent or support, has the most potential for applications in separation and catalysis.

13.
Sci Rep ; 8(1): 9097, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904117

RESUMEN

Nanopores have emerged as helpful research tools for single molecule detection. Through continuum modeling, we investigated the effects of membrane thickness, nanopore size, and pore shape on current signal characteristics of DNA. The simulation results showed that, when reducing the pore diameter, the amplitudes of current signals of DNA increase. Moreover, we found that, compared to cylindrically shaped nanopores, conical-shaped nanopores produce greater signal amplitudes from biomolecules translocation. Finally, we demonstrated that continuum model simulations for the discrimination of DNA and RNA yield current characteristics approximately consistent with experimental measurements and that A-T and G-C base pairs can be distinguished using thin conical solid-state nanopores. Our study not only suggests that computational approaches in this work can be used to guide the designs of nanopore for single molecule detection, but it also provides several possible ways to improve the current amplitudes of nanopores for better resolution.


Asunto(s)
Nanoporos , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos
14.
Langmuir ; 33(5): 1248-1255, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28088856

RESUMEN

The interest in the design and controllable fabrication of hollow carbon spheres (HCSs) emanates from their tremendous potential applications in adsorption, energy conversion and storage, and catalysis. However, the effective synthesis of uniform HCSs with high surface area and abundant micropores remains a challenge. In this work, HCSs with tunable microporous shells were rationally synthesized via the hard-template method using resorcinol (R) and formaldehyde (F) as a carbon precursor. HCSs with a very high surface area (1369 m2/g) and abundant micropores (0.53 cm3/g) can be obtained with the assistance of additional inorganic silanes (TEOS) simultaneously with the carbon source (RF). Interestingly, the extra-abundant micropores showed favorable adsorption for CO2, resulting in a 1.5 times increase in the CO2 adsorption capacity compared to that of normal HCSs under the same conditions. Meanwhile, these HCSs hold potential for use in the separation of gases such as CO2 and N2.

15.
J Biomater Appl ; 31(3): 411-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27278781

RESUMEN

The pH-sensitive poly(D-A) grafted amine-functionalized bimodal mesoporous silica (D-A/BMMs) was prepared by a facile method used as a drug delivery vehicle. They exhibited superior properties such as good dispersion in aqueous medium, high drug loading efficiency, improved stability and high drug release rates. Meanwhile, its structural features and performances in a controlled delivery of ibuprofen (IBU) were systematically investigated by using XRD, N2 adsorption and desorption, SEM, TEM, FT-IR, elemental analysis and TG techniques. The results demonstrated that the obtained nanocomposite presented a flexible control over drug release by controlling the grafting amount of D-A onto the mesopores surface of aminated BMMs. The cumulative percent release of IBU from D-A/BMMs was found to be much higher at pH 7.4 than at pH 2.0. The release rate was very slow in an acidic medium but became faster in a neutral medium, owing to hydrogen bonding in an acidic medium and electrostatic repulsion between negatively charged carboxyl groups in an alkaline medium.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Preparaciones de Acción Retardada/química , Concentración de Iones de Hidrógeno , Ibuprofeno/administración & dosificación , Nanocápsulas/química , Nanoporos/ultraestructura , Dióxido de Silicio/química , Absorción Fisicoquímica , Materiales Biomiméticos/química , Líquidos Corporales/química , Preparaciones de Acción Retardada/administración & dosificación , Difusión , Ibuprofeno/química , Nanocápsulas/administración & dosificación , Nanocápsulas/ultraestructura , Nanoconjugados/química , Tamaño de la Partícula , Polímeros/química , Porosidad , Propiedades de Superficie
16.
J Pharm Sci ; 104(12): 4299-4306, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26501935

RESUMEN

Bimodal mesoporous silicas (BMMs) have been proved to be a good drug-loaded carrier. However, it did not provide stimuli sensitivity or controlled release performance yet. In the present work, a "smart" mesoporous silica-based pH-dependent [poly(methacrylic acid)]-silica hybrid nanoparticles (P/NN-BMMs) drug delivery system was developed and evaluated with ibuprofen (IBU) as a model drug. P/NN-BMMs were prepared by coating poly(methacrylic acid) (PMAA) onto amino-modified surface of BMMs via the "graft to" strategy. The structure and texture of resultant hybrid nanoparticles were determined with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, N2 sorption isotherms, and elemental analysis. The PMAA acts as a molecular switch to achieve controlled drug release and the amount of grafted-PMAA can remarkably affect its performance. The drug-loading rate is decreased markedly with the increasing of the amount of grafted-PMAA, meanwhile, the drug-loading kinetics on P/NN-BMMs fits Korsmeyer-Peppas model. In addition, the drug-release amount from drug-loaded P/NN-BMMs is pH dependent, showing an increasing tendency with the increase of pH value.


Asunto(s)
Preparaciones de Acción Retardada/química , Ibuprofeno/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Dióxido de Silicio/química , Adsorción , Portadores de Fármacos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Tamaño de la Partícula , Porosidad , Difracción de Rayos X/métodos
17.
J Nanosci Nanotechnol ; 15(6): 4347-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26369047

RESUMEN

Eu(3+)-modified 1,8-naphthalic anhydride (ENC) as a fluorescent tracer was successfully prepared, and then the effects of various solvents, including DMF, DMSO, CH3OH, C2H3N, and C3H6O, on the fluorescent performances of obtained ENC were investigated by means of Ultraviolet-visible absorption, Photoluminescence performances, Fourier transform infrared spectroscopy, Thermogravimetric analysis, and Time-resolved fluorescence measurements. The results showed that the inductive force strength derived from Eu3+ ion was gradually decreased with increasing polarity of used solvents as in order: C3H6O < C2H3N < DMF < CH3OH < DMSO, while the co-effects of various solvents involving hydrogen bonding were increased. Meanwhile, the influences of mentioned-above interactions on the luminescence features of resultant ENC were remarkable, which demonstrated the gradual decreasing of fluorescent intensity of characteristic peaks by accompany with obvious red-shifting of their emission wavelength. Furthermore, the fluorescence decay behaviors of ENC were elucidated, and therefore its luminescence mechanism was put forward.

18.
J Mol Graph Model ; 50: 44-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24727264

RESUMEN

This paper describes the design and function of a visualization tool, VCMM, for visualizing and analyzing data, and interfacing solvers for generic continuum molecular modeling. In particular, an emphasis of the program is to treat the data set based on unstructured mesh as used in finite/boundary element simulations, which largely enhances the capabilities of current visualization tools in this area that only support structured mesh. VCMM is segmented into molecular, meshing and numerical modules. The capabilities of molecular module include molecular visualization and force field assignment. Meshing module contains mesh generation, analysis and visualization tools. Numerical module currently provides a few finite/boundary element solvers of continuum molecular modeling, and contains several common visualization tools for the numerical result such as line and plane interpolations, surface probing, volume rendering and stream rendering. Three modules can exchange data with each other and carry out a complete process of modeling. Interfaces are also designed in order to facilitate usage of other mesh generation tools and numerical solvers. We develop a technique to accelerate data retrieval and have combined many graphical techniques in visualization. VCMM is highly extensible, and users can obtain more powerful functions by introducing relevant plug-ins. VCMM can also be useful in other fields such as computational quantum chemistry, image processing, and material science.


Asunto(s)
Programas Informáticos , Algoritmos , Simulación por Computador , Modelos Moleculares
19.
Chem Asian J ; 8(3): 582-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23345278

RESUMEN

A solvothermal post-treatment method was developed to synthesize Fe(3)O(4)@mesosilica core-shell nanospheres (CSNs) with a well-preserved morphology, mesoporous structure, and tunable large pore diameters (2.5-17.6 nm) for the first time. N,N-Dimethylhexadecylamine (DMHA), which was generated in situ during the heat-treatment process, was mainly responsible for this pore-size enlargement, as characterized by NMR spectroscopy. This pore-size expansion can be strengthened with the aid of hexamethyldisilazane (HMDS), whilst the nature of the surface of the Fe(3)O(4)@mesosilica CSNs can be easily modified with trimethylsilyl groups during the pore-size-expansion process. The hydrophobicity of the Fe(3)O(4)@mesosilica CSNs increased for the enlarged mesopores and the adsorption capacity of these CSNs for benzene (up to 1.5 g g(-1)) is the highest ever reported for Fe(3)O(4)@mesosilica CSNs. The resultant Fe(3)O(4)@mesosilica CSNs (pore size: 10 nm) showed a 3.6-times higher adsorption capacity of lysozyme than those without the pore expansion (pore size: 2.5 nm), thus making them a good candidate for loading large molecules.

20.
ChemSusChem ; 5(12): 2390-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23132691

RESUMEN

Pd-doped propyl sulfonic acid-functionalized hollow nanospheres proved to be efficient bifunctionalized catalysts for the one-pot synthesis of methyl isobutyl ketone (MIBK) from acetone and hydrogen in liquid phase. These hollow nanospheres exhibited a higher activity than their bulk mesoporous counterparts (SBA-15 or FDU-12), mainly due to the short diffusion resistance of hollow nanospheres. Hollow nanospheres with silica frameworks showed higher activity and selectivity for MIBK than those with ethane-bridged frameworks, suggesting that hollow nanospheres with hydrophilic surface properties favor the formation of MIBK. This is probably due to the increased affinity of the hydrophilic surface towards acetone and its decreased affinity towards MIBK, which precludes deep condensation of MIBK with acetone. Under optimal conditions, up to 90 % selectivity for MIBK can be obtained with conversions of acetone as high as 43 %. This result is among the best reported so far for mesoporous silica-based catalysts. The control/fine-tuning of morphology and surface properties provides an efficient strategy for improving the catalytic performance of solid catalysts.


Asunto(s)
Acetona/química , Etano/análogos & derivados , Metil n-Butil Cetona/síntesis química , Nanosferas/química , Silanos/química , Compuestos de Trimetilsililo/química , Catálisis , Técnicas de Química Sintética , Etano/química , Interacciones Hidrofóbicas e Hidrofílicas , Metil n-Butil Cetona/química , Microscopía Electrónica de Transmisión , Estructura Molecular , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...