Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(7): 8832-8841, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38327039

RESUMEN

The electrochemical nitrogen reduction reaction (eNRR) is a highly promising alternative to the Haber-Bosch (H-B) process, but its commercial development is limited by the high bond energy of N2 molecules and the presence of the competitive hydrogen evolution reaction (HER). Here, a metal-free composite electrocatalyst of boron nitride (h-BNNs) and carbon nanotubes (CNTs) was explored through the interfacial hybridization of h-BNNs and CNTs, which showed a highly improved eNRR Faraday efficiency (FE) of 63.9% and an NH3 yield rate of 36.5 µg h-1 mgcat.-1 at -0.691 V (vs RHE). New chemical bonds of C-B and C-N were observed, indicating a strong interaction between CNTs and h-BNNs. According to the Raman spectra and the optimized model of h-BNNs/CNTs, an obvious strain effect between h-BNNs and CNTs was supposed to play a significant role in the highly improved FE, compared with the FE of h-BNNs alone (4.7%). Density functional theory (DFT) calculations further showed that h-BNNs/CNTs had lower energy barriers in eNRR, giving them higher N2 to NH3 selectivity, while h-BNNs have lower energy barriers in the HER. This work shows the important role of the strain effect in boosting the selectivity in the eNRR process.

2.
ACS Appl Mater Interfaces ; 11(43): 40078-40090, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31517475

RESUMEN

In this study, we described the synthesis, characterization, and application of hyperbranched polymer-encapsulated metal nanoparticles (HEMNs) as integrated catalysts for the supercritical cracking of hydrocarbon fuels. The metal precursor was extracted into the organic phase using a hydrocarbon-soluble hyperbranched poly(amidoamine) (CPAMAM) and then reduced in situ by NaBH4 to produce HEMNs with virtually a single-size distribution. The monitoring of the preparation process by UV-vis demonstrated the feasibility of this encapsulation approach, and the successful synthesis of three different types of HEMNs, metal (Pd, Pt, Au)@CPAMAM, reflected the universality of this method. Compared with the existing catalyst octadecylamine-stabilized Pd nanoparticle, Pd@18N, HEMNs were superior in every aspect. The new encapsulation method allowed metal NPs to have a smaller particle size beneficial to their overall specific surface area and a higher proportion of active surface atoms for a better catalytic activity. Moreover, the space-limiting effect of the polymer allowed the three HEMNs to be highly dispersed in decalin and exhibited admirable stability under storage tests for up to 12 months and high-temperature stability tests at 180 °C. During the supercritical cracking of decalin, Pd@CPAMAM possessed a much better catalytic performance than Pd@18N and CPAMAM (which can also be used as a macroinitiator). To obtain the same heat sink of 3.02 MJ/kg, the temperature could be lowered from 725 to 701, 693, and 699 °C for Pd, Pt, and Au HEMNs, respectively. Pt HEMN turned out to be the best due to its excellent catalytic dehydrogenation/cracking performance, with the conversion of decalin increasing from 22.3 to 50.7% and the heat sink rising from 2.18 to 2.62 MJ/kg with the existence of 50 ppm Pt@CPAMAM, at 675 °C. The significant enhancements were ascribed to the synergistic catalysis through the remarkable abilities of nanometals to catalyze dehydrogenation/cracking of fuel, the supercritical stabilization effects from CPAMAM, and the initiation effects of the hyperbranched polymer CPAMAM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA