Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822152

RESUMEN

The molluscan family Ostreidae, commonly known as oysters, is an important molluscan group due to its economic and ecological importance. In recent years, an abundance of genomic data of Ostreidae species has been generated and available in public domain. However, there is still a lack of a high-efficiency database platform to store and distribute these data with comprehensive tools. In this study, we developed an oyster genome database (OysterDB) to consolidate oyster genomic data. This database includes eight oyster genomes and 208,923 protein-coding gene annotations. Bioinformatic tools, such as BLAST and JBrowse, are integrated into the database to provide a user-friendly platform for homologous sequence searching, visualization of genomes, and screen for candidate gene information. Moreover, OysterDB will be continuously updated with ever-growing oyster genomic resources and facilitate future studies for comparative and functional genomic analysis of oysters ( http://oysterdb.com.cn/ ).

2.
BMC Biol ; 21(1): 204, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775818

RESUMEN

BACKGROUND: Molluscan shell, composed of a diverse range of architectures and microstructures, is a classic model system to study the relationships between molecular evolution and biomineralized structure formation. The shells of oysters differ from those of other molluscs by possessing a novel microstructure, chalky calcite, which facilitates adaptation to the sessile lifestyle. However, the genetic basis and evolutionary origin of this adaptive innovation remain largely unexplored. RESULTS: We report the first whole-genome assembly and shell proteomes of the Iwagaki oyster Crassostrea nippona. Multi-omic integrative analyses revealed that independently expanded and co-opted tyrosinase, peroxidase, TIMP genes may contribute to the chalky layer formation in oysters. Comparisons with other molluscan shell proteomes imply that von Willebrand factor type A and chitin-binding domains are basic members of molluscan biomineralization toolkit. Genome-wide identification and analyses of these two domains in 19 metazoans enabled us to propose that the well-known Pif may share a common origin in the last common ancestor of Bilateria. Furthermore, Pif and LamG3 genes acquire new genetic function for shell mineralization in bivalves and the chalky calcite formation in oysters likely through a combination of gene duplication and domain reorganization. CONCLUSIONS: The spatial expression of SMP genes in the mantle and molecular evolution of Pif are potentially involved in regulation of the chalky calcite deposition, thereby shaping the high plasticity of the oyster shell to adapt to a sessile lifestyle. This study further highlights neo-functionalization as a crucial mechanism for the diversification of shell mineralization and microstructures in molluscs, which may be applied more widely for studies on the evolution of metazoan biomineralization.


Asunto(s)
Crassostrea , Proteoma , Animales , Proteoma/genética , Multiómica , Carbonato de Calcio/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Genoma
3.
Genomics ; 115(2): 110582, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796653

RESUMEN

The oyster Ostrea denselamellosa is a live-bearing species with a sharp decline in the natural population. Despite recent breakthroughs in long-read sequencing, high quality genomic data are very limited in O. denselamellosa. Here, we carried out the first whole genome sequencing at the chromosome-level in O. denselamellosa. Our studies yielded a 636 Mb assembly with scaffold N50 around 71.80 Mb. 608.3 Mb (95.6% of the assembly) were anchored to 10 chromosomes. A total of 26,412 protein-coding genes were predicted, of which 22,636 (85.7%) were functionally annotated. By comparative genomics, we found that long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) made up a larger proportion in O. denselamellosa genome than in other oysters'. Moreover, gene family analysis showed some initial insight into its evolution. This high-quality genome of O. denselamellosa provides a valuable genomic resource for studies of evolution, adaption and conservation in oysters.


Asunto(s)
Ostrea , Animales , Ostrea/genética , Cromosomas , Genoma , Genómica , Secuenciación Completa del Genoma , Filogenia
4.
Artículo en Inglés | MEDLINE | ID: mdl-36470107

RESUMEN

The European flat oyster (Ostrea edulis) is an endangered and economically important marine bivalve species that plays a critical role in the coastal ecosystem. Here, we report a high-quality chromosome-level genome assembly of O. edulis, generated using PacBio HiFi-CCS long reads and annotated with Nanopore full-length transcriptome. The O. edulis genome covers 946.06 Mb (scaffold N50 94.82 Mb) containing 34,495 protein-coding genes and a high proportion of repeat sequences (58.49 %). The reconstructed demographic histories show that O. edulis population might be shaped by breeding habit (embryo brooding) and historical climatic change. Comparative genomic analysis indicates that transposable elements may drive lineage-specific evolution in oysters. Notably, the O. edulis genome has a Hox gene cluster rearrangement that has never been reported in bivalves, making this species valuable for evolutionary studies of molluscan diversification. Moreover, genome expansion of O. edulis is probably central to its adaptation to filter-feeding and sessile lifestyles, as well as embryo brooding and pathogen resistance, in coastal ecosystems. This chromosome-level genome assembly provides new insights into the genome feature of oysters, and presents an important resource for genetic research, evolutionary studies, and biological conservation of O. edulis.


Asunto(s)
Ostrea , Animales , Ostrea/genética , Ecosistema , Aclimatación , Elementos Transponibles de ADN , Cromosomas/genética
5.
Genomics ; 113(3): 1011-1025, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33626340

RESUMEN

Ruditapes philippinarum is an economically important marine shellfish aquaculture species, and it has the ability to regenerate its siphons. To gain a greater understanding of the molecular mechanisms at work during siphon regeneration and to provide evidence for morphological regeneration, we examined transcriptome responses of siphon tissue of R. philippinarum during regeneration and observed regenerative siphons under the stereomicroscope. The overall process of siphon regeneration was dissected based on the morphological changes of siphon and the identification of up-regulated key differentially expressed genes (DEGs). The protein biosynthesis and metabolism played important roles in wound healing and siphon regeneration of R. philippinarum. Transcriptomic analysis identified the Wnt and TGF-ß signaling pathways by focusing on the function and expression pattern of genes in these pathways during siphon regeneration. In addition, we carried out a genome-wide identification and phylogenetic analysis of TGF-ß superfamily in R. philippinarum. The expression profiles of the TGF-ß superfamily genes were analyzed in eight adult tissues (adductor muscle, mantle, foot, gill, siphon, digestive gland, gonad, and labial palp) and regenerative siphon. This study shed new light on the process of morphological regeneration and regenerative mechanism of siphon of R. philippinarum.


Asunto(s)
Bivalvos , Transcriptoma , Animales , Bivalvos/genética , Bivalvos/metabolismo , Filogenia , Regeneración/genética , Cicatrización de Heridas/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-32688272

RESUMEN

The Wnt genes encode a set of conserved glycoproteins regulating early development, cell proliferation and differentiation, and tissue regeneration in metazoans. In some mollusks, the knowledge of Wnt gene family has been limited because of the short of the genomic and transcriptomic resources. Ruditapes philippinarum is an economically important bivalve with a variety of shell coloration patterns and ability to regenerate its siphon. To gain a greater understanding of the evolutionary dynamics of Wnt gene family, we carried out a genome-wide identification and phylogenetic analysis of Wnt gene family in R. philippinarum and other four mollusks. A total of 12 Wnt genes were identified in the genome of R. philippinarum, and the dynamic patterns of gene conservation, loss and duplication of Wnt genes were analyzed in mollusks and model organisms. Furthermore, the transcriptome analyses demonstrated the expression profiles of the Wnt genes at different developmental stage, in adult tissues, during siphon regeneration, in four different shell color strains, and at uncolored and colored developmental stages in two different shell color strains. These findings suggest that the expansion of Wnt genes may play vital roles in the larval development, the formation of shell color pattern and siphon regeneration in R. philippinarum. This study provides a valuable insight into Wnt function and evolution in mollusks.


Asunto(s)
Bivalvos/genética , Familia de Multigenes , Proteínas Wnt/genética , Animales , Perfilación de la Expresión Génica , Filogenia , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...