Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Front Med (Lausanne) ; 11: 1432224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149600

RESUMEN

Through the formation of covalent connections with hyaluronic acid (HA), the inter-α-trypsin inhibitor (IαI) family collaborates to preserve the stability of the extracellular matrix (ECM). The five distinct homologous heavy chains (ITIH) and one type of light chain make up the IαI family. ITIH alone or in combination with bikunin (BK) has been proven to have important impacts in a number of earlier investigations. This implies that BK and ITIH might be crucial to both physiological and pathological processes. The functions of BK and ITIH in various pathophysiological processes are discussed independently in this paper. In the meanwhile, this study offers suggestions for further research on the roles of BK and ITIH in the course of disease and summarizes the plausible mechanisms of the previous studies.

2.
Apoptosis ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110356

RESUMEN

High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.

4.
Cell Prolif ; : e13729, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161168

RESUMEN

The trophoblast lineage differentiation represents a rate-limiting step in successful embryo implantation. Adhesion, invasion and migration processes within the trophoblast are governed by several transcription factors. Among them, CDX2 is a critical regulator shaping the destiny of the trophoblast. While its altered expression is a linchpin initiating embryo implantation in mice, the precise influence of CDX2 on the functionality and lineage differentiation of early human trophoblast remains unclear. In this study, we employed well-established human trophoblast stem cell (hTSC) lines with CDX2 overexpression coupled with a 3D in vitro culture system for early human embryos. We revealed that the downregulation of CDX2 is a prerequisite for syncytialization during human embryo implantation based on immunofluorescence, transcriptome analysis, CUT-tag sequencing and the construction of 3D human trophoblast organoids. While CDX2 overexpression inhibited syncytialization, it propelled hTSC proliferation and invasive migration. CDX2 exerted its influence by interacting with CGA, PTGS2, GCM1, LEF1 and CDH2, thereby hindering premature differentiation of the syncytiotrophoblast. CDX2 overexpression enhanced the epithelial-mesenchymal transition of human trophoblast organoids. In summary, our study provides insights into the molecular characteristics of trophoblast differentiation and development in humans, laying a theoretical foundation for advancing research in embryo implantation.

6.
J Hazard Mater ; 476: 135091, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959828

RESUMEN

The relative severity between chromium (Cr)-mediated ecotoxicity and its bioaccumulation has rarely been compared and evaluated. This study employed pot incubation experiments to simulate the soil environment with increased Cr pollution and study their effects on the growth of crops, including pepper, lettuce, wheat, and rice. Results showed that increasing total Cr presented ascendant ecotoxicity in upland soils when pH > 7.5, and significantly reduced the yield of pepper, lettuce and wheat grain by 0.3-100 %, whereas, this effect was weakened even reversed as the pH decreased. Surprisingly, a series of soils with Cr concentration of 22.7-623.5 mg kg-1 did not cause Cr accumulation in four crops over the Chinese permissible limit. The toxicity of Cr was highly associated with extractable Cr, where Cr (VI) made the greater contributions than Cr (III). Conclusively, the ecotoxicity of Cr poses a greater environmental issue as compared to the bioaccumulation of Cr in crops in upland soils, while extractable Cr (VI) makes the predominant contributions to the ecotoxicity of Cr as the total Cr increased. Our study proposes a synchronous consideration involving total Cr and Cr (VI) as the theoretical basis to establish a more reliable soil quality standard for safe production in China.


Asunto(s)
Cromo , Productos Agrícolas , Contaminantes del Suelo , Cromo/toxicidad , Contaminantes del Suelo/toxicidad , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/metabolismo , Agricultura , Suelo/química , China
7.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954022

RESUMEN

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Asunto(s)
Técnicas de Cocultivo , Linfocitos Infiltrantes de Tumor , Organoides , Receptores de Antígenos de Linfocitos T , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Organoides/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología
8.
J Vis Exp ; (209)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981107

RESUMEN

This corrects the article 10.3791/66232.

9.
Heliyon ; 10(12): e32857, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975080

RESUMEN

Long noncoding RNA (lncRNA) cancer susceptibility 9 (CASC9) has been found to be overexpressed and functions as an oncogene in many cancer types. We investigated the molecular mechanism underlying CASC9 overexpression in esophageal squamous cell carcinoma (ESCC). Transcripts containing exons 2 and 6 and exons 4 and 6 showed the highest CASC9 expression levels in ESCC, no transcripts were detected in the normal esophageal epithelial Het1A cell line. The Long Interspersed Nuclear Element-1 (LINE1 or L1) element in the genome was found to participate in the evolution of lncRNA CASC9, the antisense promoter (ASP) of L1 provides the cis-regulatory elements necessary for CASC9 activation, and the antisense chain of L1 participates in the formation of exons of CASC9. The activation of the antisense promoter was due to the aberrant hypomethylation of L1 elements. An active enhancer element was identified in the downstream region of CASC9 gene by ChIP-seq and ChIP-qPCR. The interaction between ASP and the enhancer elements was confirmed by chromosome conformation capture (3C). Thus, our results suggest that the L1 ASP activation due to aberrant hypomethylation and downstream enhancer interaction plays a key role in the overexpression of lncRNA CASC9 in ESCC.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39016079

RESUMEN

Experimental teaching is an important part of postgraduate training in basic and clinical medicine. While primary cell isolation and identification are among the most important research techniques for medical graduate students, most graduate students do not understand and master these techniques before starting their research experience. In particular, many students lack training in this field, and high-quality teaching and learning materials are still very sparse. Here, we designed a practical experiment course for graduate students engaged in research. The target students usually have research projects involving primary cell culture in their future research, making the course highly applicable for the students. The lab exercise focused on the methods of primary cell isolation (including mechanical grinding method, explant culture method and enzymatic digestion method) and identification (including flow cytometry, immunofluorescence, and periodic acid-Schiff (PAS) staining). It aimed to help students master the conceptual, principle, technical, operation, and analytical skills related to primary cell culture and contributed to their foundation for future research. Students generally reflect that they have initially mastered the isolation and identification of primary cell culture as a result of the course. Student feedback also indicates significantly increased confidence in the practical application of primary cell culture in the future. Here, we provide our experience for others who may want to implement similar courses.

11.
Explor Target Antitumor Ther ; 5(3): 600-626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966167

RESUMEN

Aim: The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods: The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results: The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and ß-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3ß at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions: The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.

12.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013633

RESUMEN

INTRODUCTION: Diabetic retinopathy (DR) is a common vascular complication of diabetes mellitus and a leading cause of vision loss worldwide. Endothelial cell (EC) heterogeneity has been observed in the pathogenesis of DR. Elucidating the underlying mechanisms governing EC heterogeneity may provide novel insights into EC-specific therapies for DR. RESEARCH DESIGN AND METHODS: We used the single-cell data from the Gene Expression Omnibus database to explore EC heterogeneity between diabetic retinas and non-diabetic retinas and identify the potential genes involved in DR. CCK-8 assays, EdU assays, transwell assays, and tube formation assays were conducted to determine the role of the identified gene in angiogenic effects. RESULTS: Our analysis identified three distinct EC subpopulations in retinas and revealed that Mitochondria-localized glutamic acid-rich protein (Mgarp) gene is potentially involved in the pathogenesis of DR. Silencing of Mgarp significantly suppressed the proliferation, migration, and tube formation capacities in retinal endothelial cells. CONCLUSIONS: This study not only offers new insights into transcriptomic heterogeneity and pathological alteration of retinal ECs but also holds the promise to pave the way for antiangiogenic therapy by targeting EC-specific gene.


Asunto(s)
Retinopatía Diabética , Células Endoteliales , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Células Endoteliales/patología , Células Endoteliales/metabolismo , Humanos , Animales , Proliferación Celular , Retina/patología , Retina/metabolismo , Transcriptoma , Movimiento Celular/genética , Ratones , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Patológica/genética , Proteínas Mitocondriales/genética , Células Cultivadas
13.
Ultrason Sonochem ; 108: 106978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971086

RESUMEN

Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.


Asunto(s)
Aire , Desecación , Rayos Infrarrojos , Agua , Agua/química , Cinética , Desecación/métodos , Bovinos , Animales , Ondas Ultrasónicas , Calor , Carne Roja , Fenómenos Físicos
14.
J Colloid Interface Sci ; 676: 701-714, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39059277

RESUMEN

Clear aligners undergo rapid stress relaxation in warm, moist oral environments, compromising therapeutic effectiveness and longevity of treatment. To develop an innovative multilayer composite material with improved stability and reduced stress release, we have engineered an innovative coating characterized by the surface aggregation of polydimethylsiloxane (PDMS), which imparts a pronounced hydrophobic effect. In addition, the chemically and physically cross-linked structure of the coating reduces the free volume created by molecular chain rearrangement owing to the presence of water molecules, thereby minimizing water penetration into the coating. Concurrently, the coating's internal structure is enriched with numerous polar functional groups to capture water molecules that penetrate into the inside of the coating. Through combination of these mechanisms, water molecules are effectively sequestered, thereby impeding their penetration into the polyethylene terephthalate glycol (PETG) substrate. The impact of the polydimethylsiloxane content on the triple-action water-resistance mechanisms was thoroughly examined using attenuated total reflection (ATR)-Fourier transform infrared (FTIR), water absorption rate, water swelling rate, and X-ray photoelectron spectroscopy. The low surface energy cross-linked polyurethane coating is applied to the polyethylene terephthalate glycol (PETG) substrate to create a novel composite material with specific mechanical properties and reduced stress relaxation. The composite material remains stable in simulated oral environment with linear swelling rate of 0.58 % upon water absorption. Additionally, the stress release rate of the composite material within 336 h is notably lower (23.64 %) than that of PETG (62.29 %).

15.
World J Clin Cases ; 12(19): 3898-3907, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994318

RESUMEN

BACKGROUND: Percutaneous hepatobiliary drainage (PTCD) is an effective method for the treatment of biliary obstruction and other diseases, but postoperative complications are still one of the important problems faced by patients. Continuous nursing is a comprehensive nursing model that plays an important role in postoperative recovery. The purpose of this study was to investigate the effect of continuous nursing on the incidence of complications in patients after PTCD surgery through meta-analysis and to evaluate its efficacy and safety. AIM: To evaluate the effect of extended nursing on the incidence of complications in discharged patients after percutaneous transhepatic biliary drainage (PTBD). METHODS: Randomized controlled studies on PTBD postdischarge extended care were identified in the CNKI, Wanfang, VIP, CBM, PubMed, Cochrane Library, Embase, Web of Science, and other databases. The quality of the included studies was evaluated using the Joanna Briggs Institute of Australia literature quality evaluation tool, and a meta-analysis of the included studies was performed with RevMan 5.4 software. RESULTS: Finally, 9 studies were included, with a total sample size of 854 patients (425 patients in the control group and 429 patients in the intervention group). Meta-analysis revealed that extended care effectively reduced biliary tract infection (RR: 0.42, 95%CI: 0.30-0.57), puncture wound infection (RR: 0.19, 95%CI: 0.06-0.65), catheter protrusion or displacement in discharged patients after PTBD (RR: 0.31, 95%CI: 0.18-0.54), catheter blockage (RR: 0.23, 95%CI: 0.13-0.42), skin infection around the drainage tube (RR: 0.30, 95%CI: 0.12-0.77), and catheter-related readmissions (RR: 0.34, 95%CI: 0.18-0.65) (P < 0.05). CONCLUSION: Compared with conventional discharge care, extended care can effectively reduce the occurrence of complications such as biliary tract infection, puncture wound infection, catheter prolapse or displacement, catheter blockage, skin infection around the drainage tube, and catheter-related readmission in discharged patients after PTBD.

16.
BMC Pregnancy Childbirth ; 24(1): 468, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982352

RESUMEN

PURPOSE: This study evaluates the efficacy of intrauterine hCG perfusion for RIF, as defined by ESHRE 2023 guidelines, highlighting hCG as a cost-effective alternative to other immunotherapies, especially suitable for less developed regions. It aims to clarify treatment guidance amidst previous inconsistencies. METHODS: This meta-analysis, registered with PROSPERO (CRD42024443241) and adhering to PRISMA guidelines, assessed the efficacy and safety of intrauterine hCG perfusion in enhancing implantation and pregnancy outcomes in RIF. Comprehensive literature searches were conducted through December 2023 in major databases including PubMed, Web of Science, Embase, the Cochrane Library, and key Chinese databases, without language restrictions. Inclusion and exclusion criteria were strictly aligned with the 2023 ESHRE recommendations, with exclusions for studies lacking robust control, clear outcomes, or adequate data integrity. The risk of bias was evaluated using the Newcastle-Ottawa Scale, ROBINS-I, and RoB2 tools. Data analysis was performed in R using the 'meta' package, employing both fixed and random effect models to account for study variability. Subgroup analyses by dosage, volume, hCG concentration, timing of administration, and type of embryo transfer were conducted to deepen insights, enhancing the reliability and depth of the meta-analysis in elucidating the role of hCG perfusion in RIF treatments. RESULTS: Data from 13 studies, comprising six retrospective and six prospective studies from single centers, along with one multi-center RCT, totaling 2,157 participants, were synthesized to evaluate the effectiveness of intrauterine hCG perfusion in enhancing implantation and pregnancy outcomes in patients with RIF. Significant improvements were observed in clinical pregnancy and embryo implantation rates across various dosages, timing of administration, and embryo developmental stages, without impacting miscarriage rates. Notably, the most significant efficacy within subgroups occurred with a 500 IU dosage and perfusion parameters of ≤ 500µL volume and ≥ 2 IU/µL concentration. Additionally, a limited number of studies showed no significant increases in ectopic pregnancy or multiple pregnancy rates, and a modest improvement in live birth rates, although the small number of these studies precludes definitive conclusions. CONCLUSIONS: The analysis suggests that intrauterine hCG perfusion probably enhances embryo implantation, clinical pregnancy, and live birth rates slightly in RIF patients. Benefits are indicated with a dosage of 500 IU and a maximum volume of 500µL at concentrations of at least 2 IU/µL. However, substantial heterogeneity from varying study types and the limited number of studies necessitate cautious interpretation. These findings underscore the need for more rigorously designed RCTs to definitively assess the efficacy and safety.


Asunto(s)
Gonadotropina Coriónica , Implantación del Embrión , Femenino , Humanos , Embarazo , Gonadotropina Coriónica/administración & dosificación , Gonadotropina Coriónica/sangre , Transferencia de Embrión/métodos , Perfusión/métodos , Guías de Práctica Clínica como Asunto , Resultado del Embarazo
17.
Int J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954672

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery that significantly affects patient outcomes. Given the limited treatment options available, identifying modifiable risk factors is critical. Frailty and obesity, two heterogeneous physiological states, have significant implications for identifying and preventing AKI. Our study investigated the interplay among frailty, body composition, and AKI risk after cardiac surgery to inform patient management strategies. MATERIAL AND METHODS: This retrospective cohort study included three international cohorts. Primary analysis was conducted in adult patients who underwent cardiac surgery between 2014 and 2019 at Wuhan XX Hospital, China. We tested the generalizability of our findings with data from two independent international cohorts, the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database. Frailty was assessed using a clinical lab-based frailty index (FI-LAB), while total body fat percentage (BF%) was calculated based on a formula accounting for BMI, sex, and age. Logistic regression models were used to analyze the associations between frailty, body fat, and AKI, adjusting for pertinent covariates. RESULTS: A total of 8785 patients across three international cohorts were included in the study. In the primary analysis of 3,569 patients from Wuhan XX Hospital, moderate and severe frailty were associated with an increased AKI risk after cardiac surgery. Moreover, a nonlinear relationship was observed between body fat percentage and AKI risk. When stratified by the degree of frailty, lower body fat correlated with a decreased incidence of AKI. Extended analyses using the MIMIC-IV and eICU cohorts (n=3,951 and n=1,265, respectively) validated these findings and demonstrated that a lower total BF% was associated with decreased AKI incidence. Moderation analysis revealed that the effect of frailty on AKI risk was moderated by the body fat percentage. Sensitivity analyses demonstrated results consistent with the main analyses. CONCLUSION: Higher degrees of frailty were associated with an elevated risk of AKI following cardiac surgery, and total BF% moderated this relationship. This research underscores the significance of integrating frailty and body fat assessments into routine cardiovascular care to identify high-risk patients for AKI and implement personalized interventions to improve patient outcomes.

18.
DNA Cell Biol ; 43(8): 395-400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829105

RESUMEN

This study aimed to determine the function of angiopoietin-related protein 4 (ANGPTL4) and bone morphogenetic protein 7 (BMP7) on hepatocellular carcinoma (HCC). Overexpressing plasmids were cotransfected into HepG2 cells to determine the interaction between ANGPTL4 and BMP7. The effect of ANGPTL4 on the stability of BMP7 is examined by detecting the expression and ubiquitination levels. In vitro and in vivo experiments of knocking down ANGPTL4 while overexpressing BMP7 were performed to investigate whether the effects of ANGPTL4 on HCC proliferation, migration, and downstream signaling pathways were dependent on BMP7. ANGPTL4 is able to interact with BMP7, and knockdown of ANGPTL4 increased BMP7 expression and ubiquitination. Overexpression of BMP7 reversed the inhibition of HCC proliferation and migration as well as the decrease in the expression levels of Smad1/5/8 and MAPK14 caused by knockdown of ANGPTL4. ANGPTL4 promotes the proliferation and migration of HCC by inhibiting the ubiquitination degradation of BMP7 and the Smad/MAPK pathway, providing a novel mechanism and a potential therapeutic target for the treatment of HCC.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Proteína Morfogenética Ósea 7 , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Neoplasias Hepáticas , Ubiquitinación , Humanos , Proliferación Celular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Células Hep G2 , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Movimiento Celular/genética , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/genética , Animales , Proteínas Smad/metabolismo , Proteínas Smad/genética , Ratones , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
19.
J Cardiovasc Magn Reson ; 26(2): 101047, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825155

RESUMEN

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0 T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94 %) IgG4-RD patients and 22 (76 %) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r = 0.55, P = 0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6 v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

20.
Anal Chem ; 96(25): 10274-10282, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860851

RESUMEN

Multiple intracellular microRNA (miRNA) detection is essential for disease diagnosis and management. Nonetheless, the real-time detection of multiple intracellular miRNAs has remained challenging. Herein, we have developed an ultrasound (US)-powered nanomotor-based dynamic fluorescent probe for the real-time OFF-ON fluorescent determination of multiple intracellular miRNAs. The new probe relies on the utilization of multicolored quantum dot (QD)-labeled single-stranded DNA (ssDNA)/graphene oxide (GO)-coated US-powered gold nanowire (AuNW) nanomotors. The fluorescence of QDs is quenched due to π-π interactions with the GO. Upon binding to target miRNAs, the QDs-ssDNA is now distant from the AuNWs, resulting in effective OFF-ON QD fluorescence switching. Compared with conventional passive probes, the dynamic fluorescent probe enhances probe-target interactions by using the US-propelled nanomotor, resulting in exceptionally efficient and prompt hybridization. Simultaneous quantitative analysis of miR-10b and miR-21 in vitro can be achieved within 15 min with high sensitivity and specificity. Additionally, multicolor QDs provide strong signal intensity and multiplexed detection, enabling one-step real-time discrimination between cancer cells (A549) and normal cells (L02). The obtained results are in good agreement with those from qRT-PCR. This dynamic fluorescent probe based on a nanomotor and QDs enables rapid "on the move" specific detection of multiple intracellular miRNAs in intact cells, facilitating real-time monitoring of diverse intracellular miRNA expression, and it could pave the way for novel applications of nanomotors in biodetection.


Asunto(s)
Colorantes Fluorescentes , Grafito , MicroARNs , Puntos Cuánticos , MicroARNs/análisis , Humanos , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Grafito/química , Oro/química , ADN de Cadena Simple/química , Nanocables/química , Ondas Ultrasónicas , Células A549
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA