Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 127, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383299

RESUMEN

BACKGROUND: Root system architecture (RSA) exhibits significant genetic variability and is closely associated with drought tolerance. However, the evaluation of drought-tolerant cotton cultivars based on RSA in the field conditions is still underexplored. RESULTS: So, this study conducted a comprehensive analysis of drought tolerance based on physiological and morphological traits (i.e., aboveground and RSA, and yield) within a rain-out shelter, with two water treatments: well-watered (75 ± 5% soil relative water content) and drought stress (50 ± 5% soil relative water content). The results showed that principal component analysis identified six principal components, including highlighting the importance of root traits and canopy parameters in influencing drought tolerance. Moreover, the systematic cluster analysis was used to classify 80 cultivars into 5 categories, including drought-tolerant cultivars, relatively drought-tolerant cultivars, intermediate cultivars, relatively drought-sensitive cultivars, and drought-sensitive cultivars. Further validation of the drought tolerance index showed that the yield drought tolerance index and biomass drought tolerance index of the drought-tolerant cultivars were 8.97 and 5.05 times higher than those of the drought-sensitive cultivars, respectively. CONCLUSIONS: The RSA of drought-tolerant cultivars was characterised by a significant increase in average length-all lateral roots, a significant decrease in average lateral root emergence angle and a moderate root/shoot ratio. In contrast, the drought-sensitive cultivars showed a significant decrease in average length-all lateral roots and a significant increase in both average lateral root emergence angle and root/shoot ratio. It is therefore more comprehensive and accurate to assess field crop drought tolerance by considering root performance.


Asunto(s)
Sequías , Gossypium , Gossypium/genética , Fenotipo , Agua , Suelo
2.
Front Plant Sci ; 15: 1358163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375084

RESUMEN

Introduction: Plant responses to drought stress are influenced by various factors, including the lateral root angle (LRA), stomatal regulation, canopy temperature, transpiration rate and yield. However, there is a lack of research that quantifies their interactions, especially among different cotton varieties. Methods: This experiment included two water treatments: well-watered (75 ± 5% soil relative water content) and drought stress (50 ± 5% soil relative water content) starting from the three-leaf growth stage. Results: The results revealed that different LRA varieties show genetic variation under drought stress. Among them, varieties with smaller root angles show greater drought tolerance. Varieties with smaller LRAs had significantly increased stomatal opening by 15% to 43%, transpiration rate by 61.24% and 62.00%, aboveground biomass by 54% to 64%, and increased seed cotton yield by 76% to 79%, and decreased canopy temperature by 9% to 12% under drought stress compared to the larger LRAs. Varieties with smaller LRAs had less yield loss under drought stress, which may be due to enhanced access to deeper soil water, compensating for heightened stomatal opening and elevated transpiration rates. The increase in transpiration rate promotes heat dissipation from leaves, thereby reducing leaf temperature and protecting leaves from damage. Discussion: Demonstrating the advantages conferred by the development of a smaller LRA under drought stress conditions holds value in enhancing cotton's resilience and promoting its sustainable adaptation to abiotic stressors.

3.
Front Plant Sci ; 14: 1271846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794936

RESUMEN

Optimal management of nitrogen fertilizer profoundly impacts sustainable development by influencing nitrogen use efficiency (NUE) and seed cotton yield. However, the effect of long-term gradient nitrogen application on the sandy loam soil is unclear. Therefore, we conducted an 8-year field study (2014-2021) using six nitrogen levels: 0 kg/hm2 (N0), 75 kg/hm2 (N1), 150 kg/hm2 (N2), 225 kg/hm2 (N3), 300 kg/hm2 (N4), and 375 kg/hm2 (N5). The experiment showed that 1) Although nitrogen application had insignificantly affected basic soil fertility, the soil total nitrogen (STN) content had decreased by 5.71%-19.67%, 6.67%-16.98%, and 13.64%-21.74% at 0-cm-20-cm, 20-cm-40-cm, and 40-cm-60-cm soil layers, respectively. 2) The reproductive organs of N3 plants showed the highest nitrogen accumulation and dry matter accumulation in both years. Increasing the nitrogen application rate gradually decreased the dry matter allocation ratio to the reproductive organs. 3) The boll number per unit area of N3 was the largest among all treatments in both years. On sandy loam, the most optional nitrogen rate was 190 kg/hm2-270 kg/hm2 for high seed cotton yield with minimal nitrogen loss and reduced soil environment pollution.

4.
Nanoscale ; 15(36): 14994-14999, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37664909

RESUMEN

We investigate the photocarrier dynamics in bulk PdSe2, a layered transition metal dichalcogenide with a novel pentagonal structure and unique electronic and optical properties. Using femtosecond transient absorption microscopy, we study the behavior of photocarriers in mechanically exfoliated bulk PdSe2 flakes at room temperature. By employing a 400 nm ultrafast laser pulse, electron-hole pairs are generated, and their dynamics are probed using an 800 nm detection pulse. Our findings reveal that the lifetime of photocarriers in bulk PdSe2 is approximately 210 ps. Furthermore, by spatially resolving the differential reflection signal, we determine a photocarrier diffusion coefficient of about 7.3 cm2 s-1. Based on these results, we estimate a diffusion length of around 400 nm and a photocarrier mobility of approximately 300 cm2 V-1 s-1. These results shed light on the ultrafast optoelectronic properties of PdSe2, offer valuable insights into photocarriers in this emerging material, and enable design of high-performance optoelectronic devices based on PdSe2.

5.
Am J Transl Res ; 15(8): 5519-5527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692932

RESUMEN

OBJECTIVE: To analyze the therapeutic effect of acupuncture combined with mifepristone on uterine fibroids and its influence on sex hormones and inflammatory factors. METHODS: Data of 102 patients with uterine fibroids admitted to Shanxi Provincial Hospital of Chinese Medicine from January 2019 to January 2022 were retrospectively analyzed. Among them, there were 50 patients treated with mifepristone alone (control group) and 52 patients undergoing combined treatment of acupuncture and mifepristone (observation group). After 2 months of continuous treatment, the therapeutic efficacy, volume of uterine fibroids and uterus, levels of inflammatory factors (C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α)), as well as levels of estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), along with hemodynamic levels and incidence of adverse reactions were recorded and compared between the two groups. Logistic analysis was employed to identify the independent risk factors for the recurrence of uterine fibroids in patients. RESULTS: Compared with the control group, the observation group was identified with significantly higher overall response rate (P < 0.05). The uterine fibroid volume and uterine volume significantly improved in both groups after treatment, and the improvements were more prominent in the observation group than in the control group (P < 0.05). After treatment, the serum CRP and TNF-α were both evidently decreased in the two groups, while levels of E2, FSH, LH and peak blood flow velocity were significantly ameliorated, and the improvements in the observation group were more significant than those in the control group (P < 0.05). There was no significant difference in the incidence of adverse reactions between the two groups (P > 0.05). Alcohol intake and treatment regime were independent risk factors for the recurrence of uterine fibroids in patients. CONCLUSION: Combining acupuncture with mifepristone can significantly improve uterine fibroids, estrogen and progesterone levels, as well as reduce inflammation, with a high level of safety, making it a promising treatment for clinical use.

6.
PeerJ ; 11: e15587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361035

RESUMEN

Potassium plays a significant role in the basic functions of plant growth and development. Potassium uptake is closely associated with morphological characteristics of the roots. However, the dynamic characteristics of phenotype and lifespan of cotton (Gossypium hirsutum L.) lateral roots and root hairs under low and high potassium stress remain unclear. In this study, potassium stress experiments (low and high potassium, medium potassium as control) were conducted using RhizoPot (an in situ root observation device) to determine the response characteristics of lateral roots and root hairs in cotton under potassium stress. The plant morphology, photosynthetic characteristics, root phenotypic changes, and lifespan of lateral roots and root hairs were measured. Potassium accumulation, aboveground phenotype, photosynthetic capacity, root length density, root dry weight, root diameter, lateral root lifespan, and root hair lifespan under low potassium stress were significantly decreased compared to medium potassium treatment. However, the root hair length of the former was significantly increased than that of the latter. Potassium accumulation and the lateral root lifespan were significantly increased under high potassium treatment, while root length density, root dry weight, root diameter, root hair length, and root hair lifespan were significantly decreased compared to the medium potassium treatment. Notably, there were no significant differences in aboveground morphology and photosynthetic characters. Principal component analysis revealed that lateral root lifespan, root hair lifespan of the first lateral root, and root hair length significantly correlated with potassium accumulation. The root had similar regularity responses to low and high potassium stress except for lifespan and root hair length. The findings of this study enhance the understanding of the phenotype and lifespan of cotton's lateral roots and root hairs under low and high potassium stress.


Asunto(s)
Gossypium , Potasio , Raíces de Plantas/genética , Fenotipo , Transporte Iónico
7.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108431

RESUMEN

Leaf senescence reduces the photosynthetic capacity of leaves, thus significantly affecting the growth, development, and yield formation of cotton. Melatonin (MT) is a multipotent substance proven to delay leaf senescence. However, its potential mechanism in delaying leaf senescence induced by abiotic stress remains unclear. This study aimed to explore the effect of MT on delaying drought-induced leaf senescence in cotton seedlings and to clarify its morphological and physiological mechanisms. Drought stress upregulated the leaf senescence marker genes, destroyed the photosystem, and led to excessive accumulation of reactive oxygen species (ROS, e.g., H2O2 and O2-), thus accelerating leaf senescence. However, leaf senescence was significantly delayed when 100 µM MT was sprayed on the leaves of the cotton seedlings. The delay was embodied by the increased chlorophyll content, photosynthetic capacity, and antioxidant enzyme activities, as well as decreased H2O2, O2-, and abscisic acid (ABA) contents by 34.44%, 37.68%, and 29.32%, respectively. MT significantly down-regulated chlorophyll degradation-related genes and senescence marker genes (GhNAC12 and GhWRKY27/71). In addition, MT reduced the chloroplast damage caused by drought-induced leaf senescence and maintained the integrity of the chloroplast lamellae structure under drought stress. The findings of this study collectively suggest that MT can effectively enhance the antioxidant enzyme system, improve photosynthetic efficiency, reduce chlorophyll degradation and ROS accumulation, and inhibit ABA synthesis, thereby delaying drought-induced leaf senescence in cotton.


Asunto(s)
Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Senescencia de la Planta , Sequías , Peróxido de Hidrógeno/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Plantones/metabolismo
8.
Front Plant Sci ; 13: 1007150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330250

RESUMEN

The chlorophyll fluorescence parameter Fv/Fm is significant in abiotic plant stress. Current acquisition methods must deal with the dark adaptation of plants, which cannot achieve rapid, real-time, and high-throughput measurements. However, increased inputs on different genotypes based on hyperspectral model recognition verified its capabilities of handling large and variable samples. Fv/Fm is a drought tolerance index reflecting the best drought tolerant cotton genotype. Therefore, Fv/Fm hyperspectral prediction of different cotton varieties, and drought tolerance evaluation, are worth exploring. In this study, 80 cotton varieties were studied. The hyperspectral cotton data were obtained during the flowering, boll setting, and boll opening stages under normal and drought stress conditions. Next, One-dimensional convolutional neural networks (1D-CNN), Categorical Boosting (CatBoost), Light Gradient Boosting Machines (LightBGM), eXtreme Gradient Boosting (XGBoost), Decision Trees (DT), Random Forests (RF), Gradient elevation decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-Nearest Neighbors (KNN) were modeled with F v /F m. The Savitzky-Golay + 1D-CNN model had the best robustness and accuracy (RMSE = 0.016, MAE = 0.009, MAPE = 0.011). In addition, the F v /F m prediction drought tolerance coefficient and the manually measured drought tolerance coefficient were similar. Therefore, cotton varieties with different drought tolerance degrees can be monitored using hyperspectral full band technology to establish a 1D-CNN model. This technique is non-destructive, fast and accurate in assessing the drought status of cotton, which promotes smart-scale agriculture.

9.
Front Plant Sci ; 13: 1007145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426149

RESUMEN

Driven by the increase in its frequency and duration, high temperature weather is increasingly seriously affecting crop development. High temperature inhibits the leaf development, flowering, and pollination of cotton, but its effects on the roots and root hair phenotypes and lifespans remain unclear. Thus, this study selected the two cotton varieties Nongda 601 (ND) and Guoxin 9 (GX) as materials and adopted the RhizoPot, an in situ root observation system, to investigate the effects of high temperature (38°C day and 32°C night) on the growth dynamics of the aboveground parts and root phenotypes of cotton at the seedling stage. The results showed that high temperature reduced the net photosynthetic rate and chlorophyll content, decreased the dry matter accumulation and transfer to the root, and lowered the root-shoot ratio (R/S ratio). The root phenotypes changed significantly under high temperature. After 7 d of high temperature stress, the root lengths of ND and GX decreased by 78.14 mm and 59.64 mm, respectively. Their specific root lengths increased by 79.60% and 66.11%, respectively. Their specific root surface areas increased by 418.70 cm2·g-1 and 433.42 cm2·g-1, respectively. Their proportions of very fine roots increased to 99.26% and 97.16%, respectively. After the removal of high temperature (RHT), their root lengths tended to increase, and their proportions of very fine roots continued to increase. The root hairs of ND and GX were also significantly affected by high temperature. In particular, the root hair densities of ND and GX decreased by 52.53% and 56.25%, respectively. Their average root hair lengths decreased by 96.62% and 74.29%, respectively. Their root hair lifespans decreased by 7 d and 10 d, respectively. After the RHT, their average root hair lengths failed to recover. A principal component analysis indicated that the root architectures were significantly affected by root hair density, average root hair length, specific root length, and specific root surface area under high temperatures. In summary, cotton adapts to high temperature environments by increasing the specific root length, specific root surface area, and the proportions of very fine roots, and reducing the lifespan of root hairs.

10.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234543

RESUMEN

In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to see that new and fascinating properties are formed beyond single 2D materials; thus, 2D heterostructures-based nanodevices, especially for potential optoelectronic applications, were successfully constructed in the past few decades. With the dramatically increased demand for well-controlled heterostructures for nanodevices with desired performance in recent years, various interfacial modulation methods have been carried out to regulate the interfacial coupling of such heterostructures. Here, the research progress in the study of interfacial coupling of vdWHs (investigated by Photoluminescence, Raman, and Pump-probe spectroscopies as well as other techniques), the modulation of interfacial coupling by applying various external fields (including electrical, optical, mechanical fields), as well as the related applications for future electrics and optoelectronics, have been briefly reviewed. By summarizing the recent progress, discussing the recent advances, and looking forward to future trends and existing challenges, this review is aimed at providing an overall picture of the importance of interfacial modulation in vdWHs for possible strategies to optimize the device's performance.

11.
Front Plant Sci ; 13: 1004904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247541

RESUMEN

Quantitative analysis of root development is becoming a preferred option in assessing the function of hidden underground roots, especially in studying resistance to abiotic stresses. It can be enhanced by acquiring non-destructive phenotypic information on roots, such as rhizotrons. However, it is challenging to develop high-throughput phenotyping equipment for acquiring and analyzing in situ root images of root development. In this study, the RhizoPot platform, a high-throughput in situ root phenotyping platform integrating plant culture, automatic in situ root image acquisition, and image segmentation, was proposed for quantitative analysis of root development. Plants (1-5) were grown in each RhizoPot, and the growth time depended on the type of plant and the experimental requirements. For example, the growth time of cotton was about 110 days. The imaging control software (RhizoAuto) could automatically and non-destructively image the roots of RhizoPot-cultured plants based on the set time and resolution (50-4800 dpi) and obtain high-resolution (>1200 dpi) images in batches. The improved DeepLabv3+ tool was used for batch processing of root images. The roots were automatically segmented and extracted from the background for analysis of information on radical features using conventional root software (WinRhizo and RhizoVision Explorer). Root morphology, root growth rate, and lifespan analysis were conducted using in situ root images and segmented images. The platform illustrated the dynamic response characteristics of root phenotypes in cotton. In conclusion, the RhizoPot platform has the characteristics of low cost, high-efficiency, and high-throughput, and thus it can effectively monitor the development of plant roots and realize the quantitative analysis of root phenotypes in situ.

12.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012720

RESUMEN

Root systems are the key organs through which plants absorb water and nutrients and perceive the soil environment and thus are easily damaged by salt stress. Melatonin can alleviate stress-induced damage to roots. The present study investigated the effects of exogenous melatonin on the root physiology, transcriptome and metabolome of cotton seedlings under salt stress. Salt stress was observed to damage the cell structure and disorder the physiological system of cotton seedling roots. After subjecting melatonin-soaked seeds to salt stress, the activities of SOD, CAT and POD in cotton seedling roots increased by 10-25%, 50-60% and 50-60%, respectively. The accumulation of H2O2 and MDA were significantly decreased by 30-60% and 30-50%, respectively. The contents of soluble sugar, soluble protein and K+ increased by 15-30%, 15-30% and 20-50%, respectively, while the Na+ content was significantly reduced. Melatonin also increased auxin (by 20-40%), brassinosteroids (by 5-40%) and gibberellin (by 5-35%) and promoted melatonin content and root activity. Exogenous melatonin maintained the integrity of root cells and increased the number of organelles. Transcriptomic and metabolomic results showed that exogenous melatonin could mitigate the salt-stress-induced inhibition of plant root development by regulating the reactive oxygen species scavenging system; ABC transporter synthesis; plant hormone signal transduction, endogenous melatonin gene expression; and the expression of the transcription factors MYB, TGA and WRKY33. These results provide a new direction and empirical basis for improving crop salt tolerance with melatonin.


Asunto(s)
Melatonina , Plantones , Gossypium/genética , Peróxido de Hidrógeno/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Metaboloma , Estrés Salino , Plantones/metabolismo , Estrés Fisiológico/genética , Transcriptoma
13.
Plant Physiol ; 190(4): 2335-2349, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972411

RESUMEN

In cell-cell communication, noncell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression in Arabidopsis (Arabidopsis thaliana) is mainly activated at the periphery of the SAM by auxin where ARF3 cell autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2), and TARGETS UNDER ETTIN CONTROL3 (TEC3) to regulate the arrangement of organs in regular pattern, a phenomenon referred to as phyllotaxis. We also show that ARF3 is translocated into the organizing center where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity noncell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas
14.
Front Plant Sci ; 13: 932912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845711

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine, MT) can mitigate abotic stress, including drought stress on a number of crops. However, it is unclear whether and how seed priming with melatonin alleviates the effects of drought stress on seed germination and seedling growth of triticale (Triticale hexaploide L.). In this study, we investigated the effects of seed priming with MT on seed germination, protective enzyme activity, superoxide anion, and hydrogen peroxide in triticale under PEG-6000 induced drought stress. Seed priming with 20 µM MT alleviated the adverse effects of PEG-6000 induced drought stress on seed germination and seedling growth. Triticale seeds primed with 20 µM MT exhibited improved germination potential, germination rate, germ and radicle length. Specifically, MT priming increased the germination rate by 57.67% compared with unprimed seeds. Seed priming with melatonin also alleviated the adverse effects of PEG-6000 induced drought stress on triticale seedlings. MT pretreatment with 20 µM significantly increased the net photosynthetic rate, transpiration rate, stomatal conductance, plant height, leaf area, and relative chlorophyll concentration, enhanced the activities of superoxide dismutase and peroxidase, and decreased reactive oxygen species (ROS) and malonaldehyde content in the seeds (germ and radicle) and seedlings (leaf and root). Collectively, these results suggest that seed priming with melatonin promotes ROS scavenging capacity and enhances energy supply and antioxidant enzyme activities to alleviate the adverse effects of drought stress in triticale.

15.
Front Plant Sci ; 12: 748715, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733305

RESUMEN

Nitrogen (N) deficiency is one of the pivotal environmental factors that induce leaf senescence. However, little is known regarding the impact of low N on root senescence in cotton. Thus, the objective of this study was to investigate the effect of low nitrogen on root senescence. In this study, the molecular mechanism of cotton root senescence in response to nitrogen deficiency was investigated by combing physiological and transcriptomic analysis when no nitrogen and normal nitrogen (138mg N·kg-1 soil). The results showed that: (1) nitrogen starvation induced the premature senescence of leaf, while delaying root senescence. (2) The increase in catalase (CAT) activity at 60, 80, and 100days after emergence (DAE), combined with decrease of malonaldehyde content at 60, 80, and 100 DAE, and the content of abscisic acid (ABA), all of these contributed to the delay of root senescence by low nitrogen treatment. (3) To study the molecular mechanisms underlying root senescence, the gene expression profiling between low nitrogen and normal nitrogen treatments were compared pairwise at 20, 40, 60, 80, and 100 DAE. A total of 14,607 genes were identified to be differentially expressed at these five points. (5) Most genes involved in glutathione (GSH) and ascorbate peroxidase (APX) synthesis were upregulated, while ABA, apoptosis, caspase, and cell cycle-related differentially expressed genes (DEGs) were downregulated. Coupled with the physiology data, these results provide new insights into the effect of nitrogen starvation on root senescence.

16.
Front Plant Sci ; 12: 716691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527012

RESUMEN

Phosphorus (P) deficiency is a common challenge in crop production because of its poor mobility through the soil. The root system plays a significant role in P absorption from the soil and is the initial indicator of low P levels. However, the phenotypic dynamics and longevity of cotton roots under P stress remain unknown. In this study, RhizoPot, an improvised in situ root observation device, was used to monitor the dynamics of root phenotypes of cotton seedlings under P-deficient (PD) and P-replete (PR) conditions. Low P stress reduced P absorption and accumulation in the roots, leading to low dry weight accumulation. Cotton seedlings responded to low P stress by increasing the number of lateral roots, specific root length, branch density, root length density, and length of root hairs. Additionally, the life span of root hairs was prolonged. Low P stress also reduced the average diameter of roots, promoted root extension, expanded the root coverage area, and increased the range of P acquisition. Principal component analysis revealed that the net root growth rate, root length density, root dry weight, P absorption efficiency, average root hair length, and taproot daily growth significantly influenced the cotton root architecture. Collectively, these results show that low P stress reduces the net growth rate of cotton seedling roots and restricts plant growth. Plants respond to P deficiency by extending the life span of root hairs and increasing specific root length and lateral root branch density. This change in root system architecture improves the adaptability of plants to low P conditions. The findings of this study may guide the selection of cotton varieties with efficient P utilization.

17.
BMC Plant Biol ; 21(1): 331, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246235

RESUMEN

BACKGROUND: As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0-500 µM MT treatments with salt stress induced by treatment with 150 mM NaCl. RESULTS: Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). CONCLUSIONS: Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Asunto(s)
Gossypium/metabolismo , Melatonina/metabolismo , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Productos Agrícolas/metabolismo
18.
Plant Physiol Biochem ; 162: 506-516, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33773227

RESUMEN

Although previous studies have found that melatonin can promote seed germination, the phytohormone regulation mechanism by which exogenous melatonin mediates salt tolerance during cotton seed germination is still largely unknown. The effects of melatonin on germination traits and physiological parameters of GXM9 cotton seeds (Gossypium hirsutum L.) under three salt stress treatments (CK, germination of seeds pretreated with water alone; S, germination of seeds pretreated in 150 mM NaCl under salt stress; SM, germination of seeds pretreated in 20 µM melatonin under 150 mM NaCl solution) in the laboratory was investigated. The results showed that salt stress (150 mM) inhibited cotton seed germination and endogenous melatonin accumulation, and pretreatment with 20 µM exogenous melatonin enhanced the cotton germination rate and hypocotyl length as well as the content of endogenous melatonin during seed germination. This suggests that exogenous melatonin promotes seed germination from a morphological perspective. The contents of starch, α-amylase (EC3.3.1.1), ß-galactosidase (EC3.2.1.23), abscisic acid (ABA), and gibberellin (GA) were determined simultaneously. The results showed that the α-amylase and ß-galactosidase contents in the cotton seeds decreased by 56.97% and 20.18%, respectively, under salt stress compared with the control, while the starch content increased by 11.53% compared with the control at day 7. The ABA content increased by 25.18% and GA content decreased by 27.99% under salt stress compared with the control at 24 h. When exogenous melatonin was applied to the cotton seeds, the content of α-amylase and ß-galactosidase increased by 121.77% and 32.76%, respectively, whereas the starch contents decreased by 13.55% compared with the S treatment at day 7. Similarly, the ABA content increased by 12.20% and the GA content increased by 4.77% at 24 h. To elucidate the molecular mechanism by which melatonin promotes seed germination under salt stress, the effects of ABA- and GA-related genes on plant hormone signal transduction were analyzed by quantitative real-time PCR and RNA sequencing. The results indicated that melatonin regulated the expression of ABA and GA genes in the plant signal transduction pathway, induced embryo root development and seed germination, and alleviated dormancy. The expression of the ABA signaling gene GhABF2 was up-regulated and GhDPBF2 was down-regulated, and the expression of GA signaling genes (e.g., GhGID1C and GhGID1B) was up-regulated by melatonin. In conclusion, melatonin enhances salt tolerance in cotton seeds by regulating ABA and GA and by mediating the expression of hormone-related genes in plant hormone signal transduction. This should help us to explore the regulatory mechanisms of cotton resistance and provide a foundation for the cultivation of new varieties.


Asunto(s)
Ácido Abscísico , Melatonina , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas , Gossypium , Melatonina/farmacología , Estrés Salino , Semillas
19.
PeerJ ; 8: e10486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365206

RESUMEN

Melatonin is a small-molecule indole hormone that plays an important role in participating in biotic and abiotic stress resistance. Melatonin has been confirmed to promote the normal development of plants under adversity stress by mediating physiological regulation mechanisms. However, the mechanisms by which exogenous melatonin mediates salt tolerance via regulation of antioxidant activity and osmosis in cotton seedlings remain largely unknown. In this study, the regulatory effects of melatonin on reactive oxygen species (ROS), the antioxidant system, and osmotic modulators of cotton seedlings were determined under 0-500 µM melatonin treatments with salt stress induced by 150 mM NaCl treatment. Cotton seedlings under salt stress exhibited an inhibition of growth, excessive hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA) accumulations in leaves, increased activity levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and elevated ascorbic acid (AsA) and glutathione (GSH) content in leaves. However, the content of osmotic regulators (i.e., soluble sugars and proteins) in leaves was reduced under salt stress. This indicates high levels of ROS were produced, and the cell membrane was damaged. Additionally, osmotic regulatory substance content was reduced, resulting in osmotic stress, which seriously affected cotton seedling growth under salt stress. However, exogenous melatonin at different concentrations reduced the contents of H2O2, O2 -, and MDA in cotton leaves, increased the activity of antioxidant enzymes and the content of reductive substances (i.e., AsA and GSH), and promoted the accumulation of osmotic regulatory substances in leaves under salt stress. These results suggest that melatonin can inhibit ROS production in cotton seedlings, improve the activity of the antioxidant enzyme system, raise the content of osmotic regulation substances, reduce the level of membrane lipid peroxidation, and protect the integrity of the lipid membrane under salt stress, which reduces damage caused by salt stress to seedlings and effectively enhances inhibition of salt stress on cotton seedling growth. These results indicate that 200 µM melatonin treatment has the best effect on the growth and salt tolerance of cotton seedlings.

20.
Dev Biol ; 466(1-2): 73-76, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763233

RESUMEN

For an extensive period of time apical meristem (SAM) has been considered as a mysterious organ, due to its small, hidden and dynamic structure. Confocal imaging, combined with fluorescent reporters, enables researchers to unveil the mechanisms underlying cellular activities, such as gene expression, cell division, growth patterns and cell-cell communications. Recently, a series of protocols were developed for confocal imaging of inflorescence meristem (IM) and floral meristem (FM). However, the requirement of high configuration, such as the need of a water-dipping lens without coverslip and the specialized turrets associated with fixed-stage microscopes, impedes the wide adoption of these methods. We exploited an improved object slide and matching method aiming to decrease the configuration requirement. Following this protocol, various dry microscope lenses can be selected with flexibility for building 3D images of IM and FM.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/crecimiento & desarrollo , Arabidopsis/citología , Flores/citología , Meristema/citología , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...