Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35819450

RESUMEN

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Asunto(s)
Megacariocitos , Trombocitopenia , Proteína de Unión al GTP rhoB/metabolismo , Animales , Plaquetas/metabolismo , Megacariocitos/metabolismo , Ratones , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
2.
J Thromb Haemost ; 19(11): 2835-2840, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34363738

RESUMEN

BACKGROUND: Effective inhibition of thrombosis without generating bleeding risks is a major challenge in medicine. Accumulating evidence suggests that this can be achieved by inhibition of coagulation factor XII (FXII), as either its knock-out or inhibition in animal models efficiently reduced thrombosis without affecting normal hemostasis. Based on these findings, highly specific inhibitors for human FXII(a) are under development. However, currently, in vivo studies on their efficacy and safety are impeded by the lack of an optimized animal model expressing the specific target, that is, human FXII. OBJECTIVE: The primary objective of this study is to develop and functionally characterize a humanized FXII mouse model. METHODS: A humanized FXII mouse model was generated by replacing the murine with the human F12 gene (genetic knock-in) and tested it in in vitro coagulation assays and in in vivo thrombosis models. RESULTS: These hF12KI mice were indistinguishable from wild-type mice in all tested assays of coagulation and platelet function in vitro and in vivo, except for reduced expression levels of hFXII compared to human plasma. Targeting FXII by the anti-human FXIIa antibody 3F7 increased activated partial thromboplastin time dose-dependently and protected hF12KI mice in an arterial thrombosis model without affecting bleeding times. CONCLUSION: These data establish the newly generated hF12KI mouse as a powerful and unique model system for in vivo studies on anti-FXII(a) biologics, supporting the development of efficient and safe human FXII(a) inhibitors.


Asunto(s)
Factor XII , Trombosis , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Factor XII/genética , Hemostasis , Ratones , Trombosis/tratamiento farmacológico , Trombosis/genética
3.
J Med Virol ; 92(9): 1580-1586, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32249956

RESUMEN

The recent pandemic of COVID-19, caused by SARS-CoV-2, is unarguably the most fearsome compared with the earlier outbreaks caused by other coronaviruses, SARS-CoV and MERS-CoV. Human ACE2 is now established as a receptor for the SARS-CoV-2 spike protein. Where variations in the viral spike protein, in turn, lead to the cross-species transmission of the virus, genetic variations in the host receptor ACE2 may also contribute to the susceptibility and/or resistance against the viral infection. This study aims to explore the binding of the proteins encoded by different human ACE2 allelic variants with SARS-CoV-2 spike protein. Briefly, coding variants of ACE2 corresponding to the reported binding sites for its attachment with coronavirus spike protein were selected and molecular models of these variants were constructed by homology modeling. The models were then superimposed over the native ACE2 and ACE2-spike protein complex, to observe structural changes in the ACE2 variants and their intermolecular interactions with SARS-CoV-2 spike protein, respectively. Despite strong overall structural similarities, the spatial orientation of the key interacting residues varies in the ACE2 variants compared with the wild-type molecule. Most ACE2 variants showed a similar binding affinity for SARS-CoV-2 spike protein as observed in the complex structure of wild-type ACE2 and SARS-CoV-2 spike protein. However, ACE2 alleles, rs73635825 (S19P) and rs143936283 (E329G) showed noticeable variations in their intermolecular interactions with the viral spike protein. In summary, our data provide a structural basis of potential resistance against SARS-CoV-2 infection driven by ACE2 allelic variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Sitios de Unión , Modelos Moleculares , Glicoproteína de la Espiga del Coronavirus/química , Alelos , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Variación Genética , Humanos , Unión Proteica , Conformación Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad
4.
Platelets ; 31(6): 801-811, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31948362

RESUMEN

Platelets are essential for normal hemostasis; however, pathological conditions can also trigger unwanted platelet activation precipitating thrombosis and ischemic damage of vital organs such as the heart or brain. Glycoprotein (GP)VI- and C-type lectin-like receptor 2 (CLEC-2)-mediated (hem)immunoreceptor tyrosine-based activation motif (ITAM) signaling represents a major pathway for platelet activation. The two members of the Growth-factor receptor-bound protein 2 (Grb2) family of adapter proteins expressed in platelets - Grb2 and Grb2-related adapter protein downstream of Shc (Gads) - are part of the hem(ITAM) signaling cascade by forming an adapter protein complex with linker for activation of T cells (LAT). To date, a possible functional redundancy between these two adapters in platelet activation has not been investigated. We here generated megakaryocyte- and platelet-specific Grb2/Gads double knockout (DKO) mice and analyzed their platelet function in vitro and in vivo. The DKO platelets exhibited virtually abolished (hem)ITAM signaling whereas only partial defects were seen in Grb2 or Gads single-deficient platelets. This was based on impaired phosphorylation of key molecules in the (hem)ITAM signaling cascade and translated into impaired hemostasis and partially defective arterial thrombosis, thereby exceeding the defects in either Grb2 KO or Gads KO mice. Despite this severe (hem)ITAM signaling defect, CLEC-2 dependent regulation of blood-lymphatic vessel separation was not affected in the DKO animals. These results provide direct evidence for critically redundant roles of Grb2 and Gads for platelet function in hemostasis and thrombosis, but not development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Motivo de Activación del Inmunorreceptor Basado en Tirosina/genética , Animales , Humanos , Ratones , Transducción de Señal
5.
Nat Commun ; 8: 15838, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643773

RESUMEN

Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.


Asunto(s)
Plaquetas/enzimología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Plaquetas/citología , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/enzimología , Femenino , Humanos , Megacariocitos/citología , Megacariocitos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rhoA/genética
6.
Arterioscler Thromb Vasc Biol ; 36(11): 2152-2157, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634832

RESUMEN

OBJECTIVE: It is known that both platelets and coagulation strongly influence infarct progression after ischemic stroke, but the mechanisms and their interplay are unknown. Our aim was to assess the contribution of the procoagulant platelet surface, and thus platelet-driven thrombin generation, to the progression of thromboinflammation in the ischemic brain. APPROACH AND RESULTS: We present the characterization of a novel platelet and megakaryocyte-specific TMEM16F (anoctamin 6) knockout mouse. Reflecting Scott syndrome, platelets from the knockout mouse had a significant reduction in procoagulant characteristics that altered thrombin and fibrin generation kinetics. In addition, knockout mice showed significant defects in hemostasis and arterial thrombus formation. However, infarct volumes in a model of ischemic stroke were comparable with wild-type mice. CONCLUSIONS: Platelet TMEM16F activity contributes significantly to hemostasis and thrombosis but not cerebral thromboinflammation. These results highlight another key difference between the roles of platelets and coagulation in these processes.


Asunto(s)
Plaquetas/metabolismo , Enfermedades de las Arterias Carótidas/sangre , Encefalitis/sangre , Encefalitis/genética , Hemostasis , Infarto de la Arteria Cerebral Media/sangre , Fosfatidilserinas/sangre , Proteínas de Transferencia de Fosfolípidos/sangre , Trombina/metabolismo , Trombosis/sangre , Animales , Anoctaminas , Coagulación Sanguínea , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Encefalitis/patología , Fibrina/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Cinética , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transferencia de Fosfolípidos/deficiencia , Proteínas de Transferencia de Fosfolípidos/genética , Activación Plaquetaria , Transducción de Señal , Trombosis/genética , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...