Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Protoplasma ; 260(4): 1233-1251, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36847862

RESUMEN

Low light (LL) stress during the grain-filling stage acutely impairs the quality and quantity of starch accumulation in rice grains. Here, we observed that LL-induced poor starch biosynthesis is modulated by auxin homeostasis, which regulates the activities of major carbohydrate metabolism enzymes such as starch synthase (SS) and ADP-glucose pyrophosphorylase (AGPase) in rice. Further, during the grain-filling period under LL, the starch/sucrose ratio increased in leaves but significantly decreased in the developing spikelets. This suggests poor sucrose biosynthesis in leaves and starch in the grains of the rice under LL. A lower grain starch was found to be correlated with the depleted AGPase and SS activities in the developing rice grains under LL. Further, under LL, the endogenous auxin (IAA) level in the spikelets was found to be synchronized with the expression of a heteromeric G protein gene, RGB1. Interestingly, under LL, the expression of OsYUC11 was significantly downregulated, which subsequently resulted in reduced IAA in the developing rice spikelets, followed by poor activation of grain-filling enzymes. This resulted in lowered grain starch accumulation, grain weight, panicle number, spikelet fertility, and eventually grain yield, which was notably higher in the LL-susceptible (GR4, IR8) than in the LL-tolerant (Purnendu, Swarnaprabha) rice genotypes. Therefore, we hypothesize that depletion in auxin biosynthesis under LL stress is associated with the downregulation of RBG1, which discourages the expression and activities of grain-filling enzymes, resulting in lower starch production, panicle formation, and grain yield in rice.


Asunto(s)
Oryza , Oryza/genética , Grano Comestible/metabolismo , Almidón/metabolismo , Metabolismo de los Hidratos de Carbono , Sacarosa/metabolismo , Homeostasis , Ácidos Indolacéticos/metabolismo
2.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235424

RESUMEN

Low light intensity affects several physiological parameters during the different growth stages in rice. Plants have various regulatory mechanisms to cope with stresses. One of them is the differential and temporal expression of genes, which is governed by post-transcriptional gene expression regulation through endogenous miRNAs. To decipher low light stress-responsive miRNAs in rice, miRNA expression profiling was carried out using next-generation sequencing of low-light-tolerant (Swarnaprabha) and -sensitive (IR8) rice genotypes through Illumina sequencing. Swarnaprabha and IR8 were subjected to 25% low light treatment for one day, three days, and five days at the active tillering stage. More than 43 million raw reads and 9 million clean reads were identified in Swarnaprabha, while more than 41 million raw reads and 8.5 million clean reads were identified in IR8 after NGS. Importantly, 513 new miRNAs in rice were identified, whose targets were mostly regulated by the genes involved in photosynthesis and metabolic pathways. Additionally, 114 known miRNAs were also identified. Five novel (osa-novmiR1, osa-novmiR2, osa-novmiR3, osa-novmiR4, and osa-novmiR5) and three known (osa-miR166c-3p, osa-miR2102-3p, and osa-miR530-3p) miRNAs were selected for their expression validation through miRNA-specific qRT-PCR. The expression analyses of most of the predicted targets of corresponding miRNAs show negative regulation. Hence, miRNAs modulated the expression of genes providing tolerance/susceptibility to low light stress. This information might be useful in the improvement of crop productivity under low light stress.

3.
Photosynth Res ; 153(3): 125-134, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648247

RESUMEN

Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.


Asunto(s)
Poaceae , Ribulosa-Bifosfato Carboxilasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
4.
Physiol Mol Biol Plants ; 28(3): 585-605, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35465204

RESUMEN

Seed germination plays cardinal roles in seedling establishment and their successive growth. However, seed germination is retarded by far-red (FR) enrichment under low light stress, and the inhibitory signalling mechanism remains ambiguous. Our results indicated that low light treatment, both in the open and growth chamber conditions, inhibits rice seed germination by decreasing the gibberellin (GA) contents. To explore the mechanism of GA-deficiency under low light stress, differential expression profiling of GA-anabolic, -catabolic, ABA -anabolic, -catabolic, and SLR1 was investigated, revealing that expression of ABA- anabolic, GA-catabolic genes and SLR1 was upregulated with a simultaneous downregulation of ABA-catabolic and GA-anabolic genes under low light treatment. These results suggested that FR-induced GA inadequacy is resulted by upregulation of SLR1 and GA-catabolism genes consequently increase DELLA that further subsided GA-responses in the germinating rice seeds. Moreover, we provided evidence that FR-induced GA inadequacy demotes rice seed germination by decreasing amylase activity, eventually decreasing the carbohydrate solubilization in the germinating seeds. Finally, we suggest that under low light stress, due to a retarded conversion of phytochrome A to their bioactive form, the ABA-catabolic genes were eventually upregulated with a simultaneous downregulation of GA-anabolic genes. Consequently, a lower GA pool fails to leverage the GA-dependent DELLA degradation, further shutting down the expected GA responses that reduce germination efficiency under FR-enriched light. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01167-7.

5.
Rev. biol. trop ; 68(2)jun. 2020.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1507684

RESUMEN

Introduction: Light stress is an important factor limiting the biomass yield while combining forage production with crops or forestry. Guinea grass is a widely adapted perennial fodder grass. The species exhibits high degree of variation for morphology, adaptation and biomass yield. Objective: Since there is a need in identifying shade adapted forage grasses for the expanding area under agroforestry/silvipastures, the present investigation took the task of understanding how the morphologically distinct genotypes of guinea grass respond under different shaded intensities. Methods: In the present study, forty-four genotypes related with the shade response were studied in varying shading conditions (pure sunlight, 25, 50 and 75 % shade) created artificially. Results: Based on green and dry matter yields ranking, the genotype IG 01-98 performed the best followed by genotypes IG 01-92, IG 97-5, IG 97-6 and IG 01-89 in decreasing order. Particularly, IG 01-93 was identified as the best performing under 50 % shading conditions. On the other hand, most of the top ranking genotypes performed well both under open and up to 50 % of shade. Morphologically, these genotypes were taller and possessed longer and broader leaves. Under shaded conditions (over 50 %), leaf length and width showed an increasing trend compared to open conditions. Also, chlorophyll content increased with shading intensity. Conclusions: Most of the genotypes collected from the southern Indian humid tropical environment with early flowering nature were tolerant to shade. Differential genotypic response was observed for biomass yield and yield attributes under shade. The study established appreciable variability for shade tolerance among genotypes.


Introducción: El estrés leve es un factor importante que limita el rendimiento de la biomasa al tiempo que combina laproducción forrajera con los cultivos o la silvicultura. El zacate guinea es una planta de forraje perenne ampliamente adaptada. La especie presenta un alto grado de variación en su morfología, adaptación y rendimiento de biomasa. Objetivo: Como existe la necesidad de la identificación de pastos forrajeros adaptados a la sombra para el área de expansión bajo agroforestería /silvicultura, la presente investigación se realizó para entender cómo los genotipos morfológicamente distintos al zacate guinea responden a diferentes intensidades de sombra. Métodos: Se estudiaron 44 genotipos y su respuesta a los niveles de sombra: luz solar pura y 25, 50 y 75 % de sombra (creados artificialmente). Resultados: Basado en la clasificación de rendimientos demateria verde y seca, el genotipo IG 01-98 fue el mejor, seguido de los genotipos IG 01-92, IG 97-5, IG 97-6 e IG 01-89 en orden decreciente. Por su parte, el IG 01-93 fue identificado como el de mayor rendimiento bajo el 50 % de condición de sombra. La mayoría de los genotipos de primer nivel tuvieron un buen desempeño, tanto bajo sombra abierta como al 50 %. Morfológicamente, estos genotipos fueron más altos y poseían hojas más largas y más anchas. En condiciones de sombra, de más del 50 %, la longitud y ancho de la hoja mostraron una tendencia creciente en comparación con la condición abierta. El contenido de clorofila aumentó con la intensidad de la sombra. Conclusiones: La mayoría de los genotipos recolectados al sur de la India en un ambiente tropical húmedo y tienen una floración temprana, fueron tolerantes a la sombra. Se observó una respuesta genotípica diferencial para los atributos de rendimiento y rendimiento de biomasa bajo sombra. El estudio mostró la existencia de una variabilidad apreciable para la tolerancia a la sombra entre los genotipos.

6.
Physiol Mol Biol Plants ; 26(12): 2465-2485, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424159

RESUMEN

Rice grain yield is drastically reduced under low light especially in kharif (wet) season due to cloudy weather during most part of crop growth. Therefore, 50-60% of yield penalty was observed. To overcome this problem, identification of low light tolerant rice genotypes with a high buffering capacity trait such as photosynthetic rate has to be developed. Sedoheptulose-1,7 bisphosphatase, a light-regulated enzyme, plays pivotal role in the Calvin cycle by regenerating the substrate (RuBP) for RuBisCo and therefore, indirectly regulates the influx of CO2 for this crucial process. We found a potential role of SBPase expression and activity in low light tolerant and susceptible rice genotypes by analyzing its influence on net photosynthetic rate and biomass. We observed a significant relationship of yield with photosynthesis, SBPase expression and activity especially under low light conditions. Two tolerant and two susceptible rice genotypes were used for the present study. Tolerant genotypes exhibited significant but least reduction compared to susceptible genotypes in the expression and activity of SBPase, which was also manifested in its photosynthetic rate and finally in the grain yield under low light. However, susceptible genotypes showed significant reduction in SBPase activity along with photosynthesis and grain yield suggesting that tracking the expression and activity of SBPase could form a simple and reliable method to identify the low light tolerant rice cultivars. The data were analyzed using the Indostat 7.5, Tukey-Kramer method through Microsoft Excel 2019 and PAST4.0 software. The significant association of SBPase activity with the grain yield, net assimilation rate, electron transfer rate, biomass and grain weight were observed under low light stress. These traits should be considered while selecting and breeding for low light tolerant cultivars. Thus, SBPase plays a major role in the low light tolerance mechanism in rice.

7.
Funct Plant Biol ; 41(12): 1284-1294, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32481077

RESUMEN

Flooding is one of the major harmful abiotic stresses in the low lying areas of Asia and crop losses due to submergence are considerably high. Along with plant breeding techniques, agronomic management options in general and nutrient management in particular should be taken into consideration. Response of Sub 1 and non-Sub1 cultivars of rice to post-flood nitrogen (N) management under variable flood water was compared at maximum tillering stage. Submergence tolerance on survival, leaf senescence, metabolic changes, and anti-oxidant enzymatic activities were evaluated. Sub1 cultivars proved their superiority over IR-20 in terms of significantly higher survival, anti-oxidant enzymes and lower metabolic changes. Turbid water resulted in lower survival because of poor light transmission, chlorophyll retention and silt deposition. Basal phosphorus reduced the elongation, senescence and ethylene accumulation. Post-flood foliar spray of urea substantially increased the chlorophyll, soluble sugars and extenuated ethylene accumulation resulting in significantly higher survival. These nutrient management options can provide opportunities for better survival and productivity even under turbid water, helping farmers to cope with the existing problems in flood-prone areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...