Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mult Scler ; 30(1): 121-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38140857

RESUMEN

BACKGROUND: The Nine-Hole Peg Test (9HPT) is the golden standard to measure manual dexterity in people with multiple sclerosis (MS). However, administration requires trained personnel and dedicated time during a clinical visit. OBJECTIVES: The objective of this study is to validate a smartphone-based test for remote manual dexterity assessment, the icompanion Finger Dexterity Test (FDT), to be included into the icompanion application. METHODS: A total of 65 MS and 81 healthy subjects were tested, and 20 healthy subjects were retested 2 weeks later. RESULTS: The FDT significantly correlated with the 9HPT (dominant: ρ = 0.62, p < 0.001; non-dominant: ρ = 0.52, p < 0.001). MS subjects had significantly higher FDT scores than healthy subjects (dominant: p = 0.015; non-dominant: p = 0.013), which was not the case for the 9HPT. A significant correlation with age (dominant: ρ = 0.46, p < 0.001; non-dominant: ρ = 0.40, p = 0.002), Expanded Disability Status Scale (EDSS, dominant: ρ = 0.36, p = 0.005; non-dominant: ρ = 0.31, p = 0.024), and disease duration for the non-dominant hand (ρ = 0.31, p = 0.016) was observed. There was a good test-retest reliability in healthy subjects (dominant: r = 0.69, p = 0.001; non-dominant: r = 0.87, p < 0.001). CONCLUSIONS: The icompanion FDT shows a moderate-to-good concurrent validity and test-retest reliability, differentiates between the MS subjects and healthy controls, and correlates with clinical parameters. This test can be implemented into routine MS care for remote follow-up of manual dexterity.


Asunto(s)
Dedos , Esclerosis Múltiple , Humanos , Reproducibilidad de los Resultados , Teléfono Inteligente , Destreza Motora , Extremidad Superior , Esclerosis Múltiple/diagnóstico
2.
Sci Rep ; 12(1): 21771, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526708

RESUMEN

Advanced structural brain imaging techniques, such as diffusion tensor imaging (DTI), have been used to study the relationship between DTI-parameters and cognitive scores in multiple sclerosis (MS). In this study, we assessed cognitive function in 61 individuals with MS and a control group of 35 healthy individuals with the Symbol Digit Modalities Test, the California Verbal Learning Test-II, the Brief Visuospatial Memory Test-Revised, the Controlled Oral Word Association Test, and Stroop-test. We also acquired diffusion-weighted images (b = 1000; 32 directions), which were processed to obtain the following DTI scalars: fractional anisotropy, mean, axial, and radial diffusivity. The relation between DTI scalars and cognitive parameters was assessed through permutations. Although fractional anisotropy and axial diffusivity did not correlate with any of the cognitive tests, mean and radial diffusivity were negatively correlated with all of these tests. However, this effect was not specific to any specific white matter tract or cognitive test and demonstrated a general effect with only low to moderate individual voxel-based correlations of <0.6. Similarly, lesion and white matter volume show a general effect with medium to high voxel-based correlations of 0.5-0.8. In conclusion, radial diffusivity is strongly related to cognitive impairment in MS. However, the strong associations of radial diffusivity with both cognition and whole brain lesion volume suggest that it is a surrogate marker for general decline in MS, rather than a marker for specific cognitive functions.


Asunto(s)
Trastornos del Conocimiento , Esclerosis Múltiple , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión por Resonancia Magnética/métodos , Trastornos del Conocimiento/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anisotropía , Cognición
3.
Eur J Neurol ; 29(10): 3039-3049, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35737867

RESUMEN

BACKGROUND AND PURPOSE: Data from neuro-imaging techniques allow us to estimate a brain's age. Brain age is easily interpretable as 'how old the brain looks' and could therefore be an attractive communication tool for brain health in clinical practice. This study aimed to investigate its clinical utility by investigating the relationship between brain age and cognitive performance in multiple sclerosis (MS). METHODS: A linear regression model was trained to predict age from brain magnetic resonance imaging volumetric features and sex in a healthy control dataset (HC_train, n = 1673). This model was used to predict brain age in two test sets: HC_test (n = 50) and MS_test (n = 201). Brain-predicted age difference (BPAD) was calculated as BPAD = brain age minus chronological age. Cognitive performance was assessed by the Symbol Digit Modalities Test (SDMT). RESULTS: Brain age was significantly related to SDMT scores in the MS_test dataset (r = -0.46, p < 0.001) and contributed uniquely to variance in SDMT beyond chronological age, reflected by a significant correlation between BPAD and SDMT (r = -0.24, p < 0.001) and a significant weight (-0.25, p = 0.002) in a multivariate regression equation with age. CONCLUSIONS: Brain age is a candidate biomarker for cognitive dysfunction in MS and an easy to grasp metric for brain health.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Pruebas Neuropsicológicas
4.
Sci Rep ; 11(1): 7376, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795779

RESUMEN

Graph-theoretical analysis is a novel tool to understand the organisation of the brain.We assessed whether altered graph theoretical parameters, as observed in multiple sclerosis (MS), reflect pathology-induced restructuring of the brain's functioning or result from a reduced signal quality in functional MRI (fMRI). In a cohort of 49 people with MS and a matched group of 25 healthy subjects (HS), we performed a cognitive evaluation and acquired fMRI. From the fMRI measurement, Pearson correlation-based networks were calculated and graph theoretical parameters reflecting global and local brain organisation were obtained. Additionally, we assessed metrics of scanning quality (signal to noise ratio (SNR)) and fMRI signal quality (temporal SNR and contrast to noise ratio (CNR)). In accordance with the literature, we found that the network parameters were altered in MS compared to HS. However, no significant link was found with cognition. Scanning quality (SNR) did not differ between both cohorts. In contrast, measures of fMRI signal quality were significantly different and explained the observed differences in GTA parameters. Our results suggest that differences in network parameters between MS and HS in fMRI do not reflect a functional reorganisation of the brain, but rather occur due to reduced fMRI signal quality.


Asunto(s)
Tendón Calcáneo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Adolescente , Adulto , Anciano , Encéfalo , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Cognición , Femenino , Humanos , Modelos Lineales , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Modelos Neurológicos , Red Nerviosa/fisiopatología , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
5.
Hum Brain Mapp ; 42(5): 1376-1390, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247542

RESUMEN

Working memory (WM) problems are frequently present in people with multiple sclerosis (MS). Even though hippocampal damage has been repeatedly shown to play an important role, the underlying neurophysiological mechanisms remain unclear. This study aimed to investigate the neurophysiological underpinnings of WM impairment in MS using magnetoencephalography (MEG) data from a visual-verbal 2-back task. We analysed MEG recordings of 79 MS patients and 38 healthy subjects through event-related fields and theta (4-8 Hz) and alpha (8-13 Hz) oscillatory processes. Data was source reconstructed and parcellated based on previous findings in the healthy subject sample. MS patients showed a smaller maximum theta power increase in the right hippocampus between 0 and 400 ms than healthy subjects (p = .014). This theta power increase value correlated negatively with reaction time on the task in MS (r = -.32, p = .029). Evidence was provided that this relationship could not be explained by a 'common cause' confounding relationship with MS-related neuronal damage. This study provides the first neurophysiological evidence of the influence of hippocampal dysfunction on WM performance in MS.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Hipocampo/fisiopatología , Memoria a Corto Plazo/fisiología , Esclerosis Múltiple/fisiopatología , Ritmo Teta/fisiología , Adulto , Disfunción Cognitiva/etiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones
6.
Hum Brain Mapp ; 41(9): 2431-2446, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32180307

RESUMEN

Multi-item working memory (WM) is a complex cognitive function thought to arise from specific frequency band oscillations and their interactions. While some theories and consistent findings have been established, there is still a lot of unclarity about the sources, temporal dynamics, and roles of event-related fields (ERFs) and theta, alpha, and beta oscillations during WM activity. In this study, we performed an extensive whole-brain ERF and time-frequency analysis on n-back magnetoencephalography data from 38 healthy controls. We identified the previously unknown sources of the n-back M300, the right inferior temporal and parahippocampal gyrus and left inferior temporal gyrus, and frontal theta power increase, the orbitofrontal cortex. We shed new light on the role of the precuneus during n-back activity, based on an early ERF and theta power increase, and suggest it to be a crucial link between lower-level and higher-level information processing. In addition, we provide strong evidence for the central role of the hippocampus in multi-item WM behavior through the dynamics of theta and alpha oscillatory changes. Almost simultaneous alpha power decreases observed in the hippocampus and occipital fusiform gyri, regions known to be involved in letter processing, suggest that these regions together enable letter recognition, encoding and storage in WM. In summary, this study offers an extensive investigation into the spatial, temporal, and spectral characteristics of n-back multi-item WM activity.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Magnetoencefalografía/métodos , Memoria a Corto Plazo/fisiología , Desempeño Psicomotor/fisiología , Análisis Espacio-Temporal , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA