Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(22): 226801, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286809

RESUMEN

We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ∼0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

2.
Sci Rep ; 7: 45546, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358116

RESUMEN

Based on the first principles calculation, we investigate the electronic band structures of graphene-MoS2 and Ti-MoS2 heterojunctions under gate-voltages. By simultaneous control of external electric fields and carrier charging concentrations, we show that the graphene's Dirac point position inside the MoS2 bandgap is easily modulated with respect to the co-varying Fermi level, while keeping the graphene's linear band structure around the Dirac point. The easy modulation of graphene bands is not confined to the special cases where the conduction-band-minimum point of MoS2 and the Dirac point of graphene are matched up in reciprocal space, but is generalized to their dislocated cases. This flexibility caused by the strong decoupling between graphene and MoS2 bands enhances the gate-controlled switching performance in MoS2-graphene hybrid stacking-device.

3.
Nano Lett ; 15(12): 7788-93, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26572058

RESUMEN

Thin flakes of black phosphorus (BP) are a two-dimensional (2D) semiconductor whose energy gap is predicted being sensitive to the number of layers and external perturbations. Very recently, it was found that a simple method of potassium (K) doping on the surface of BP closes its band gap completely, producing a Dirac semimetal state with a linear band dispersion in the armchair direction and a quadratic one in the zigzag direction. Here, based on first-principles density functional calculations, we predict that, beyond the critical K density of the gap closure, 2D massless Dirac Fermions (i.e., Dirac cones) emerge in K-doped few-layer BP, with linear band dispersions in all momentum directions, and the electronic states around Dirac points have chiral pseudospins and Berry's phase. These features are robust with respect to the spin-orbit interaction and may lead to graphene-like electronic transport properties with greater flexibility for potential device applications.

4.
Science ; 349(6249): 723-6, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26273052

RESUMEN

Black phosphorus consists of stacked layers of phosphorene, a two-dimensional semiconductor with promising device characteristics. We report the realization of a widely tunable band gap in few-layer black phosphorus doped with potassium using an in situ surface doping technique. Through band structure measurements and calculations, we demonstrate that a vertical electric field from dopants modulates the band gap, owing to the giant Stark effect, and tunes the material from a moderate-gap semiconductor to a band-inverted semimetal. At the critical field of this band inversion, the material becomes a Dirac semimetal with anisotropic dispersion, linear in armchair and quadratic in zigzag directions. The tunable band structure of black phosphorus may allow great flexibility in design and optimization of electronic and optoelectronic devices.

5.
ACS Nano ; 9(8): 8312-20, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26169189

RESUMEN

Molybdenum disulfide (MoS2) nanosheet, one of two-dimensional (2D) semiconductors, has recently been regarded as a promising material to break through the limit of present semiconductors. With an apparent energy band gap, it certainly provides a high carrier mobility, superior subthreshold swing, and ON/OFF ratio in field-effect transistors (FETs). However, its potential in carrier mobility has still been depreciated since the field-effect mobilities have only been measured from metal-insulator-semiconductor (MIS) FETs, where the transport behavior of conducting carriers located at the insulator/MoS2 interface is unavoidably interfered by the interface traps and gate voltage. Moreover, thin MoS2 MISFETs have always shown large hysteresis with unpredictable negative threshold voltages. Here, we for the first time report MoS2-based metal semiconductor field-effect transistors (MESFETs) using NiOx Schottky electrode which makes van der Waals interface with MoS2. We thus expect that the maximum mobilities or carrier transport behavior of the Schottky devices may hardly be interfered by interface traps or an on-state gate field. Our MESFETs with a few and ∼10 layer MoS2 demonstrate intrinsic-like high mobilities of 500-1200 cm(2)/(V s) at a certain low threshold voltage between -1 and -2 V without much hysteresis. Moreover, they work as a high speed and highly sensitive phototransistor with 2 ms switching and ∼5000 A/W, respectively, supporting their high intrinsic mobility results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...