Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769366

RESUMEN

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

2.
Chem Sci ; 14(4): 1018-1026, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36755719

RESUMEN

Multivalency plays a key role in achieving strong, yet reversible interactions in nature, and provides critical chemical organization in biological recognition processes. Chemists have taken an interest in designing multivalent synthetic assemblies to both better understand the underlying principles governing these interactions, and to build chemical tools that either enhance or prevent such recognition events from occurring in biology. Rationally tailoring synthetic strategies to achieve the high level of chemical control and tunability required to mimic these interactions, however, is challenging. Here, we introduce a systematic and modular synthetic approach to the design of well-defined molecular multivalent protein-binding constructs that allows for control over size, morphology, and valency. A series of supramolecular mono-, bi-, and tetrametallic Fe(ii) complexes featuring a precise display of peripheral saccharides was prepared through coordination-driven self-assembly from simple building blocks. The molecular assemblies are fully characterized, and we present the structural determination of one complex in the series. The mannose and maltose-appended assemblies display strong multivalent binding to model lectin, Concanavalin A (K d values in µM), where the strength of the binding is a direct consequence of the number of saccharide units decorating the molecular periphery. This versatile synthetic strategy provides chemical control while offering an easily accessible approach to examine important design principles governing structure-function relationships germane to biological recognition and binding properties.

3.
Dalton Trans ; 51(5): 1927-1935, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019931

RESUMEN

We report the synthesis and characterization of a new series of permanently porous, three-dimensional metal-organic frameworks (MOFs), M-HAF-2 (M = Fe, Ga, or In), constructed from tetratopic, hydroxamate-based, chelating linkers. The structure of M-HAF-2 was determined by three-dimensional electron diffraction (3D ED), revealing a unique interpenetrated hcb-a net topology. This unusual topology is enabled by the presence of free hydroxamic acid groups, which lead to the formation of a diverse network of cooperative interactions comprising metal-hydroxamate coordination interactions at single metal nodes, staggered π-π interactions between linkers, and H-bonding interactions between metal-coordinated and free hydroxamate groups. Such extensive, multimodal interconnectivity is reminiscent of the complex, noncovalent interaction networks of proteins and endows M-HAF-2 frameworks with high thermal and chemical stability and allows them to readily undergo postsynthetic metal ion exchange (PSE) between trivalent metal ions. We demonstrate that M-HAF-2 can serve as versatile porous materials for ionic separations, aided by one-dimensional channels lined by continuously π-stacked aromatic groups and H-bonding hydroxamate functionalities. As an addition to the small group of hydroxamic acid-based MOFs, M-HAF-2 represents a structural merger between MOFs and hydrogen-bonded organic frameworks (HOFs) and illustrates the utility of non-canonical metal-coordinating functionalities in the discovery of new bonding and topological patterns in reticular materials.

4.
Nat Protoc ; 16(7): 3264-3297, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34050338

RESUMEN

The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein-protein interactions, a challenging task to accurately replicate in the de novo design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein-metal-organic frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome cb562 monomer through selective, concurrent association of Fe3+ and Zn2+ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule for protein derivatization and self-assembly of protein-HA conjugates into polyhedral cages and (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-MOFs using symmetric metal-binding protein nodes. Protein cages are analyzed using analytical ultracentrifugation, transmission electron microscopy and single-crystal X-ray diffraction techniques. HA-mediated protein-MOFs are formed in sitting-drop vapor diffusion crystallization trays and are probed via single-crystal X-ray diffraction and multi-crystal small-angle X-ray scattering measurements. Ligand synthesis, construction of HA-mediated assemblies, and post-assembly analysis as described in this protocol can be performed by a graduate-level researcher within 6 weeks.


Asunto(s)
Ácidos Hidroxámicos/química , Metales/química , Proteínas/química , Área Bajo la Curva , Cisteína/química , Ferritinas/química , Ferritinas/ultraestructura , Ligandos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/ultraestructura , Modelos Moleculares , Proteínas/ultraestructura
5.
J Am Chem Soc ; 142(45): 19402-19410, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33124805

RESUMEN

The mechanical and functional properties of many crystalline materials depend on cooperative changes in lattice arrangements in response to external perturbations. However, the flexibility and adaptiveness of crystalline materials are limited. Additionally, the bottom-up, molecular-level design of crystals with desired dynamic and mechanical properties at the macroscopic level remains a considerable challenge. To address these challenges, we had previously integrated mesoporous, cubic ferritin crystals with hydrogel networks, resulting in hybrid materials (polymer-integrated crystals or PIX) which could undergo dramatic structural changes while maintaining crystalline periodicity and display efficient self-healing. The dynamics and mechanics of these ferritin-PIX were devoid of directionality, which is an important attribute of many molecular and macroscopic materials/devices. In this study, we report that such directionality can be achieved through the use of ferritin crystals with anisotropic symmetries (rhombohedral or trigonal), which enable the templated formation of patterned hydrogel networks in crystallo. The resulting PIX expand and contract anisotropically without losing crystallinity, undergo prompt bending motions in response to stimuli, and self-heal efficiently, capturing some of the essential features of sophisticated biological devices like skeletal muscles.

6.
J Am Chem Soc ; 142(41): 17265-17270, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32972136

RESUMEN

We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.


Asunto(s)
Ferritinas/química , Estructuras Metalorgánicas/química , Cristalización , Fenómenos Mecánicos , Modelos Moleculares , Transición de Fase , Conformación Proteica , Relación Estructura-Actividad , Temperatura de Transición , Zinc/química
7.
J Am Chem Soc ; 142(15): 6907-6912, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32223143

RESUMEN

We report the rational design and synthesis of a water-stable metal-organic framework (MOF), Fe-HAF-1, constructed from supramolecular, Fe3+-hydroxamate-based polyhedra with mononuclear metal nodes. Owing to its chelate-based construction, Fe-HAF-1 displays exceptional chemical stability in organic and aqueous solvents over a wide pH range (pH 1-14), including in the presence of 5 M NaOH. Despite the charge neutrality of the Fe3+-tris(hydroxamate) centers, Fe-HAF-1 crystals are negatively charged above pH 4. This unexpected property is attributed to the formation of defects during crystallization that results in uncoordinated hydroxamate ligands or hydroxide-coordinated Fe centers. The anionic nature of Fe-HAF-1 crystals enables selective adsorption of positively charged ions in aqueous solution, resulting in efficient separation of organic dyes and other charged species in a size-selective fashion. Fe-HAF-1 presents a new addition to a small group of chelate-based MOFs and provides a rare framework whose 3D connectivity is exclusively formed by metal-hydroxamate coordination.


Asunto(s)
Estructuras Metalorgánicas/química , Quelantes , Humanos , Ligandos
8.
Nature ; 578(7793): 172-176, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31969701

RESUMEN

Many proteins exist naturally as symmetrical homooligomers or homopolymers1. The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design2-5. As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures1,6-a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, 'one-pot' coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures7,8 and are, to our knowledge, unique among designed systems9-13 in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies-or inorganic coordination complexes-obtained by design.


Asunto(s)
Modelos Moleculares , Proteínas/química , Complejos de Coordinación/química
9.
Chem Sci ; 11(38): 10523-10528, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34123187

RESUMEN

In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks. The studies reveal alternating lamellae of metal-rich, crystalline regions and metal-deficient non-crystalline polymer, which span the length of hundreds of nanometers. Polymers consisting of random PEG blocks, PEG end-blocks, or non-coordinating poly(cyclooctadiene) (COD) show similar alternation of metal-rich and metal-deficient regions, indicating a universal self-assembly mechanism. A variety of techniques were employed to interrogate the internal structure of the polyMOFs, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and small-angle synchrotron X-ray scattering (SAXS). Independent of the copolymer architecture or composition, the internal structure of the polyMOF crystals showed similar lamellar self-assembly at single-nanometer length scales.

10.
ACS Cent Sci ; 4(11): 1578-1586, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30555911

RESUMEN

The co-self-assembly of proteins and nucleic acids (NAs) produces complex biomolecular machines (e.g., ribosomes and telomerases) that represent some of the most daunting targets for biomolecular design. Despite significant advances in protein and DNA or RNA nanotechnology, the construction of artificial nucleoprotein complexes has largely been limited to cases that rely on the NA-mediated spatial organization of protein units, rather than a cooperative interplay between protein- and NA-mediated interactions that typify natural nucleoprotein assemblies. We report here a structurally well-defined synthetic nucleoprotein assembly that forms through the synergy of three types of intermolecular interactions: Watson-Crick base pairing, NA-protein interactions, and protein-metal coordination. The fine thermodynamic balance between these interactions enables the formation of a crystalline architecture under highly specific conditions.

11.
Nature ; 560(7719): E31, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29973728

RESUMEN

Change history: In this Letter, Alexander Groisman should have been listed as an author. This error has been corrected online.

12.
Nature ; 557(7703): 86-91, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720635

RESUMEN

The formation of condensed matter typically involves a trade-off between structural order and flexibility. As the extent and directionality of interactions between atomic or molecular components increase, materials generally become more ordered but less compliant, and vice versa. Nevertheless, high levels of structural order and flexibility are not necessarily mutually exclusive; there are many biological (such as microtubules1,2, flagella 3 , viruses4,5) and synthetic assemblies (for example, dynamic molecular crystals6-9 and frameworks10-13) that can undergo considerable structural transformations without losing their crystalline order and that have remarkable mechanical properties8,14,15 that are useful in diverse applications, such as selective sorption 16 , separation 17 , sensing 18 and mechanoactuation 19 . However, the extent of structural changes and the elasticity of such flexible crystals are constrained by the necessity to maintain a continuous network of bonding interactions between the constituents of the lattice. Consequently, even the most dynamic porous materials tend to be brittle and isolated as microcrystalline powders 14 , whereas flexible organic or inorganic molecular crystals cannot expand without fracturing. Owing to their rigidity, crystalline materials rarely display self-healing behaviour 20 . Here we report that macromolecular ferritin crystals with integrated hydrogel polymers can isotropically expand to 180 per cent of their original dimensions and more than 500 per cent of their original volume while retaining periodic order and faceted Wulff morphologies. Even after the separation of neighbouring ferritin molecules by 50 ångströms upon lattice expansion, specific molecular contacts between them can be reformed upon lattice contraction, resulting in the recovery of atomic-level periodicity and the highest-resolution ferritin structure reported so far. Dynamic bonding interactions between the hydrogel network and the ferritin molecules endow the crystals with the ability to resist fragmentation and self-heal efficiently, whereas the chemical tailorability of the ferritin molecules enables the creation of chemically and mechanically differentiated domains within single crystals.

13.
J Am Chem Soc ; 139(24): 8160-8166, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28590729

RESUMEN

Previously, we adopted the construction principles of metal-organic frameworks (MOFs) to design a 3D crystalline protein lattice in which pseudospherical ferritin nodes decorated on their C3 symmetric vertices with Zn coordination sites were connected via a ditopic benzene-dihydroxamate linker. In this work, we have systematically varied both the metal ions presented at the vertices of the ferritin nodes (Zn(II), Ni(II), and Co(II)) and the synthetic dihydroxamate linkers, which yielded an expanded library of 15 ferritin-MOFs with the expected body-centered (cubic or tetragonal) lattice arrangements. Crystallographic and small-angle X-ray scattering (SAXS) analyses indicate that lattice symmetries and dimensions of ferritin-MOFs can be dictated by both the metal and linker components. SAXS measurements on bulk crystalline samples reveal that some ferritin-MOFs can adopt multiple lattice conformations, suggesting dynamic behavior. This work establishes that the self-assembly of ferritin-MOFs is highly robust and that the synthetic modularity that underlies the structural diversity of conventional MOFs can also be applied to the self-assembly of protein-based crystalline materials.


Asunto(s)
Ferritinas/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Modelos Moleculares
14.
J Am Chem Soc ; 137(36): 11598-601, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26305584

RESUMEN

We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal-organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein-metal-organic crystalline framework whose formation is fully dependent on each of its three components.


Asunto(s)
Metales/química , Proteínas/química , Cristalización , Dispersión Dinámica de Luz , Conformación Proteica
15.
J Chem Inf Model ; 53(11): 2781-91, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24134121

RESUMEN

Halogen bonding interactions between halogenated ligands and proteins were examined using the crystal structures deposited to date in the PDB. The data was analyzed as a function of halogen bonding to main chain Lewis bases, viz. oxygen of backbone carbonyl and backbone amide nitrogen. This analysis also examined halogen bonding to side-chain Lewis bases (O, N, and S) and to the electron-rich aromatic amino acids. All interactions were restricted to van der Waals radii with respective atoms. The data reveals that while fluorine and chlorine have strong tendencies favoring interactions with the backbone Lewis bases at glycine, the trend is not restricted to the achiral amino acid backbone for larger halogens. Halogen side-chain interactions are not restricted to amino acids containing O, N, and S as Lewis bases. Electron-rich aromatic amino acids host a high frequency of halogen bonds as does Leu. A closer examination of the latter hydrophobic side chain reveals that the "propensity of interactions" of halogen ligands at this oily residue is an outcome of strong classical halogen bonds with Lewis bases in the vicinity. Finally, an examination of Θ1 (C-X···O and C-X···N) and Θ2 (X···O-Z and X···N-Z) angles reveals that very few ligands adopt classical halogen bonding angles, suggesting that steric and other factors may influence these angles. The data is discussed in the context of ligand design for pharmaceutical applications.


Asunto(s)
Aminoácidos/química , Electrones , Bases de Lewis/química , Proteínas/química , Bases de Datos de Proteínas , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Nitrógeno/química , Oxígeno/química , Azufre/química , Termodinámica
16.
Mol Inform ; 31(2): 167-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27476961

RESUMEN

Nitrosative and oxidative stress, associated with the generation of excessive reactive nitrogen and oxygen radical species respectively, are thought to contribute to protein misfolding diseases which represent a group of neurodegenerative disorders that are characterized by protein aggregation and plaque formation. Curcumin, a polyphenolic compound, possesses diverse anti-inflammatory, antitumor, and antioxidant properties. Several studies have revealed that curcumin can reduce the oxidative/nitrosative stress and thereby decrease the neuronal attrition. However, curcumin has poor bioavailability and has raised several concerns focused on its limited clinical impact. The aim of this study was to find other compounds which can assist in decreasing nitrosative stress and possess enhanced bioavailability. Here, use of ß-lactoglobulin was examined as a vehicle to transport molecules to the gut. The Zinc database was searched using curcumin as reference and 6457 compounds were selected for the study. These compounds were docked to ß-lactoglobulin using Glide to find the best fit ligands. Our studies identified four compounds that bind to ß-lactoglobulin and scavenge NOx (free radicals) efficiently.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...