Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736301

RESUMEN

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Asunto(s)
COVID-19 , Mycobacterium , Niño , Humanos , Interferón gamma , SARS-CoV-2 , Interferón-alfa , Factor 1 Regulador del Interferón
2.
Science ; 379(6632): eabo3627, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36538032

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Asunto(s)
COVID-19 , Citocinas , Endorribonucleasas , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Humanos , COVID-19/inmunología , Citocinas/genética , Citocinas/inmunología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN Bicatenario , SARS-CoV-2/genética , Síndrome de Respuesta Inflamatoria Sistémica/genética
3.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497082

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.


Asunto(s)
Hipertensión Pulmonar , Células Madre Pluripotentes Inducidas , Hipertensión Arterial Pulmonar , Animales , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Arteria Pulmonar/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo
4.
J Thorac Cardiovasc Surg ; 164(6): e429-e443, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34985414

RESUMEN

OBJECTIVE: Gene therapy is a promising approach in the treatment of cardiovascular diseases. Preclinical and clinical studies have demonstrated that adeno-associated viral vectors are the most attractive vehicles for gene transfer. However, preexisting immunity, delayed gene expression, and postinfection immune response limit the success of this technology. The aim of this study was to investigate the efficacy of the first synthetic adeno-associated viral lineage clone, Anc80L65, for cardiac gene therapy. METHODS: By combining 2 different reporter approaches by fluorescence with green fluorescent protein and bioluminescence (Firefly luciferase), we compared transduction efficiency of Anc80L65 and adeno-associated virus, serotype 9 in neonatal rat cardiomyocytes ex vivo and rat hearts in vivo after intramyocardial and intracoronary administration. RESULTS: In cardiomyocytes, Anc80L65 provided a green fluorescent protein expression of 28.9% (36.4 ± 3.34 cells/field) at 24 hours and approximately 100% on day 7. In contrast, adeno-associated virus, serotype 9 green fluorescent protein provided minimal green fluorescent protein expression of 5.64% at 24 hours and 11.8% on day 7. After intramyocardial injection, vector expression peaked on day 7 with Anc80L65; however, with adeno-associated virus, serotype 9 the peak expression was during week 6. Administration of Anc80L65 demonstrated significantly more efficient expression of reporter gene than after adeno-associated virus, serotype 9 at 6 weeks (6.81 ± 0.64 log10 gc/100 ng DNA vs 6.49 ± 0.28 log10 gc/100 ng DNA, P < .05). These results were consistent with the amount of genome copy per cell observed in the heart. CONCLUSIONS: Anc80L65 vector allows fast and robust gene transduction compared with adeno-associated virus, serotype 9 vector in cardiac gene therapy. Anc80L65 did not adversely affect cardiac function and caused no inflammatory response or toxicity.


Asunto(s)
Dependovirus , Vectores Genéticos , Ratas , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Miocitos Cardíacos/metabolismo , Técnicas de Transferencia de Gen , Transducción Genética
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807656

RESUMEN

Glycine is an amino acid with unique properties because its side chain is composed of a single hydrogen atom. It confers conformational flexibility to proteins and conserved glycines are often indicative of protein domains involving tight turns or bends. All six beta-type connexins expressed in human epidermis (Cx26, Cx30, Cx30.3, Cx31, Cx31.1 and Cx32) contain a glycine at position 12 (G12). G12 is located about halfway through the cytoplasmic amino terminus and substitutions alter connexin function in a variety of ways, in some cases altering protein interactions and leading to cell death. There is also evidence that alteration of G12 changes the structure of the amino terminus in connexin- and amino acid- specific ways. This review integrates structural, functional and physiological information about the role of G12 in connexins, focusing on beta-connexins expressed in human epidermis. The importance of G12 substitutions in these beta-connexins is revealed in two hereditary skin disorders, keratitis ichthyosis and erythrokeratodermia variabilis, both of which result from missense mutations affecting G12.


Asunto(s)
Conexinas/metabolismo , Epidermis/metabolismo , Eritroqueratodermia Variable/metabolismo , Uniones Comunicantes/metabolismo , Ictiosis/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Conexinas/genética , Epidermis/patología , Eritroqueratodermia Variable/genética , Eritroqueratodermia Variable/patología , Uniones Comunicantes/genética , Uniones Comunicantes/patología , Glicina/genética , Glicina/metabolismo , Humanos , Ictiosis/genética , Ictiosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...