Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(5): e0251420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33974669

RESUMEN

Coastal wetlands are experiencing accelerated rates of fragmentation and degradation due to sea-level rise, sediment deficits, subsidence, and salt-water intrusion. This reduces their ability to provide ecosystem benefits, such as wave attenuation, habitat for migratory birds, and a sink for carbon and nitrogen cycles. A deteriorated back barrier wetland in New Jersey, USA was nourished through thin layer placement (TLP) of dredged sediment in 2016. A field investigation was conducted in 2019 using a cone penetrometer (CPT) to quantify the establishment of soil strength post sediment nourishment compared to adjacent reference sites in conjunction with traditional wetland performance measures. Results show that the nourished area exhibited weaker strengths than the reference sites, suggesting the root system of the vegetation is still establishing. The belowground biomass measurements correlated to the CPT strength measurements, demonstrating that shear strength measured from the cone penetrometer could serve as a surrogate to monitor wetland vegetation trajectories. In addition, heavily trafficked areas underwent compaction from heavy equipment loads, inhibiting the development of vegetation and highlighting how sensitive wetlands are to anthropogenic disturbances. As the need for more expansive wetland restoration projects grow, the CPT can provide rapid high-resolution measurements across large areas supplying government and management agencies with vital establishment trajectories.


Asunto(s)
Sedimentos Geológicos , Elevación del Nivel del Mar , Suelo , Humedales , Biomasa , Ecosistema , Geología/instrumentación , Geología/métodos , Actividades Humanas , New Jersey , Raíces de Plantas/fisiología , Resistencia al Corte
2.
J Am Chem Soc ; 125(19): 5939-47, 2003 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-12733934

RESUMEN

Resonance Raman spectroscopy, electronic absorption spectroscopy, and the time-dependent theory of spectroscopy are used to analyze the intervalence electron transfer properties of a strongly delocalized class III molecule, the tetraalkyl-p-phenylene diamine radical cation bis(3-oxo-9-azabicyclo[3.3.1]non-9-yl)benzene ((k33)(2)PD(+)). This molecule is a prototypical system for strongly coupled organic intervalence electron transfer spectroscopy. Resonance Raman excitation profiles in resonance with the lowest energy absorption band are measured. The normal modes of vibration that are most strongly coupled to the intervalence transition are identified and assigned by using UB3LYP/6-31G(d) calculations. Excited state distortions are obtained, and the resonance Raman intensities and excitation profiles are calculated by using the time-dependent theory of Raman spectroscopy. The most highly distorted normal modes are all totally symmetric, but intervalence electron transfer absorption spectra are usually interpreted in terms of a model based on coupling between potential surfaces that are displaced along an asymmetric normal coordinate. This model provides a convenient physical picture for the intervalence compound, but it is inadequate for explaining the spectra. The absorption spectrum arising from only the strongly coupled surfaces consists of a single narrow band, in contrast to the broad, vibronically structured experimental spectrum. The electronic absorption spectrum of (k33)(2)PD(+) is calculated by using exactly the same potential surfaces as those used for the Raman calculations. The importance of symmetric normal coordinates, in addition to the asymmetric coordinate, is discussed. The observed vibronic structure is an example of the missing mode effect; the spacing is interpreted in terms of the time-dependent overlaps in the time domain.

3.
Inorg Chem ; 41(7): 1755-60, 2002 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-11925166

RESUMEN

The nitridorhenium(V) complexes ReNCl(2)(PCy3)(2) (1), ReNBr(2)(PCy3)(2) (2), ReNCl(2)(PPh3)(2) (3), and ReNBr(2)(PPh3)(2) (4) produce structured emission spectra upon excitation at low temperature. The origin, E(00), occurs at 15 775, 16 375, 15 875, and 16 300 cm(-1), respectively. The vibronic peaks are regularly spaced with an average energy separation corresponding to the Re triple bond N stretching frequency. The nitridorhenium stretching frequency ranges from 1095 to 1101 cm(-1), as determined by Raman and IR spectroscopy. The excited-state distortions are calculated by fitting the emission spectra. The excited state arises primarily from a d(xy) (ReN nonbonding) to d(yz) (ReN pi antibonding) transition. The rhenium-nitrogen bond length in the excited state is 0.08 A longer than in the ground electronic state, which is consistent with the difference in bond lengths of ReN bonds of bond order 3 and bond order 2.5 as determined from molecular structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...