Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 6(1): lqae006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38312938

RESUMEN

Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.

2.
Nat Plants ; 10(1): 118-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38168610

RESUMEN

Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Resistencia a la Sequía , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Agua/metabolismo
4.
Nat Plants ; 9(12): 2042-2058, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38066290

RESUMEN

Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Factores de Transcripción/metabolismo , ARN Mensajero/metabolismo , Metilación de ARN
5.
J Biol Chem ; 299(8): 105018, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423301

RESUMEN

Cell surface pattern recognition receptors sense invading pathogens by binding microbial or endogenous elicitors to activate plant immunity. These responses are under tight control to avoid excessive or untimely activation of cellular responses, which may otherwise be detrimental to host cells. How this fine-tuning is accomplished is an area of active study. We previously described a suppressor screen that identified Arabidopsis thaliana mutants with regained immune signaling in the immunodeficient genetic background bak1-5, which we named modifier of bak1-5 (mob) mutants. Here, we report that bak1-5 mob7 mutant restores elicitor-induced signaling. Using a combination of map-based cloning and whole-genome resequencing, we identified MOB7 as conserved binding of eIF4E1 (CBE1), a plant-specific protein that interacts with the highly conserved eukaryotic translation initiation factor eIF4E1. Our data demonstrate that CBE1 regulates the accumulation of respiratory burst oxidase homolog D, the NADPH oxidase responsible for elicitor-induced apoplastic reactive oxygen species production. Furthermore, several mRNA decapping and translation initiation factors colocalize with CBE1 and similarly regulate immune signaling. This study thus identifies a novel regulator of immune signaling and provides new insights into reactive oxygen species regulation, potentially through translational control, during plant stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ARN , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio , Proteínas de Unión al ARN/metabolismo
6.
Plant Cell Environ ; 46(7): 2187-2205, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36946067

RESUMEN

PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops.


Asunto(s)
Oryza , Oryza/genética , Triticum/fisiología , Fósforo , Ecosistema , Grano Comestible , Fosfatos , Raíces de Plantas
8.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36018271

RESUMEN

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Estrés Fisiológico , Dióxido de Carbono/metabolismo , Transpiración de Plantas/fisiología , Plantas/metabolismo , Agua/metabolismo
9.
Nat Rev Mol Cell Biol ; 23(10): 642, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35982170
10.
Plant Physiol ; 190(2): 1365-1383, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35640551

RESUMEN

Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipoxia/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
11.
Dev Cell ; 57(9): 1177-1192.e6, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35504287

RESUMEN

Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.


Asunto(s)
Oryza , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Agua/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(14): e2112516119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349347

RESUMEN

SignificanceProteins are the machinery which execute essential cellular functions. However, measuring their abundance within an organism can be difficult and resource-intensive. Cells use a variety of mechanisms to control protein synthesis from mRNA, including short open reading frames (uORFs) that lie upstream of the main coding sequence. Ribosomes can preferentially translate uORFs instead of the main coding sequence, leading to reduced translation of the main protein. In this study, we show that uORF sequence variation between individuals can lead to different rates of protein translation and thus variable protein abundances. We also demonstrate that natural variation in uORFs occurs frequently and can be linked to whole-plant phenotypes, indicating that uORF sequence variation likely contributes to plant adaptation.


Asunto(s)
Biosíntesis de Proteínas , Zea mays , Regiones no Traducidas 5' , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Zea mays/genética , Zea mays/metabolismo
13.
Curr Opin Plant Biol ; 65: 102122, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34688206

RESUMEN

Plant growth and development is the product of layers of sensing and regulation that are modulated by multifactorial environmental cues. Innovations in genomics currently allow gene regulatory control to be quantified at multiple scales and high resolution in defined cell populations and even in individual cells or nuclei in plants. The application of these 'omic technologies in highly controlled, as well as field environments is revolutionizing the recognition of factors critical to spatial and temporal responses to single or multiple environmental cues. Within and pan-species comparisons illuminate deeply conserved circuitry and targets of selection. This knowledge can benefit the breeding and engineering of crops with greater resilience to climate variability and the ability to augment nutrition through plant-microbial interactions.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Genómica , Desarrollo de la Planta
15.
Plants (Basel) ; 10(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34961210

RESUMEN

Global climate change has increased the number of severe flooding events that affect agriculture, including rice production in the U.S. and internationally. Heavy rainfall can cause rice plants to be completely submerged, which can significantly affect grain yield or completely destroy the plants. Recently, a major effect submergence tolerance QTL during the vegetative stage, qSub8.1, which originated from Ciherang-Sub1, was identified in a mapping population derived from a cross between Ciherang-Sub1 and IR10F365. Ciherang-Sub1 was, in turn, derived from a cross between Ciherang and IR64-Sub1. Here, we characterize the qSub8.1 region by analyzing the sequence information of Ciherang-Sub1 and its two parents (Ciherang and IR64-Sub1) and compare the whole genome profile of these varieties with the Nipponbare and Minghui 63 (MH63) reference genomes. The three rice varieties were sequenced with 150 bp pair-end whole-genome shotgun sequencing (Illumina HiSeq4000), followed by performing the Trimmomatic-SOAPdenovo2-MUMmer3 pipeline for genome assembly, resulting in approximate genome sizes of 354.4, 343.7, and 344.7 Mb, with N50 values of 25.1, 25.4, and 26.1 kb, respectively. The results showed that the Ciherang-Sub1 genome is composed of 59-63% Ciherang, 22-24% of IR64-Sub1, and 15-17% of unknown sources. The genome profile revealed a more detailed genomic composition than previous marker-assisted breeding and showed that the qSub8.1 region is mostly from Ciherang, with some introgressed segments from IR64-Sub1 and currently unknown source(s).

17.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209672

RESUMEN

Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery and calli regeneration, which can be hampered by genotype-dependent requirements for plant regeneration. Here, methods for Agrobacterium-mediated and biolistic transformation and regeneration of indica rice were optimized using CRISPR-Cas9 gene-editing of the submergence tolerance regulator SUBMERGENCE 1A-1 gene of the cultivar Ciherang-Sub1. Callus induction and plantlet regeneration methods were optimized for embryogenic calli derived from immature embryos and mature seed-derived calli. Optimized regeneration (95%) and maximal editing efficiency (100%) were obtained from the immature embryo-derived calli. Phenotyping of T1 seeds derived from the edited T0 plants under submergence stress demonstrated inferior phenotype compared to their controls, which phenotypically validates the disruption of SUB1A-1 function. The methods pave the way for rapid CRISPR-Cas9 gene editing of recalcitrant indica rice cultivars.


Asunto(s)
Genes de Plantas , Oryza/fisiología , Regeneración , Transformación Genética , Sistemas CRISPR-Cas , Proteínas de Unión al Calcio/genética , Edición Génica , Fenotipo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Semillas/genética , Semillas/crecimiento & desarrollo
18.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010619

RESUMEN

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Invenciones , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Solanum lycopersicum/citología , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Especificidad de la Especie , Factores de Transcripción/metabolismo , Xilema/genética
19.
New Phytol ; 229(1): 71-78, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953954

RESUMEN

A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA-protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.


Asunto(s)
Regulación de la Expresión Génica , Hipoxia , Plantas , Factores de Transcripción , Núcleo Celular/genética , Cromatina , Hipoxia/genética , Transcripción Genética , Activación Transcripcional
20.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142722

RESUMEN

The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , RNA-Seq/métodos , Estrés Fisiológico , Transcriptoma , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...