Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(7): e0236298, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32701996

RESUMEN

Degeneration of the retinal pigment epithelium (RPE) plays a central role in age-related macular degeneration (AMD). Throughout life, RPE cells are challenged by a variety of cytotoxic stressors, some of which are cumulative with age and may ultimately contribute to drusen and lipofuscin accumulation. Stressors such as these continually damage RPE cells resulting in a state of chronic wounding. Current cell-based platforms that model a state of chronic RPE cell wounding are limited, and the RPE cellular response is not entirely understood. Here, we used the electric cell-substrate impedance sensing (ECIS) system to induce a state of acute or chronic wounding on differentiated human fetal RPE cells to analyze changes in the wound repair response. RPE cells surrounding the lesioned area employ both cell migration and proliferation to repair wounds but fail to reestablish their original cell morphology or density after repetitive wounding. Chronically wounded RPE cells develop phenotypic AMD characteristics such as loss of cuboidal morphology, enlarged size, and multinucleation. Transcriptomic analysis suggests a systemic misregulation of RPE cell functions in bystander cells, which are not directly adjacent to the wound. Genes associated with the major RPE cell functions (LRAT, MITF, RDH11) significantly downregulate after wounding, in addition to differential expression of genes associated with the cell cycle (CDK1, CDC6, CDC20), inflammation (IL-18, CCL2), and apoptosis (FAS). Interestingly, repetitive wounding resulted in prolonged misregulation of genes, including FAS, LRAT, and PEDF. The use of ECIS to induce wounding resulted in an over-representation of AMD-associated genes among those dysregulated genes, particularly genes associated with advanced AMD. This simple system provides a new model for further investigation of RPE cell wound response in AMD pathogenesis.


Asunto(s)
Degeneración Macular/patología , Modelos Biológicos , Enfermedad Aguda , Efecto Espectador , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Enfermedad Crónica , Feto/patología , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Cinética , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/patología , Transcriptoma/genética , Cicatrización de Heridas
2.
PLoS Genet ; 14(1): e1007182, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329291

RESUMEN

Ovules are fundamental for plant reproduction and crop yield as they are the precursors of seeds. Therefore, ovule specification is a critical developmental program. In Arabidopsis thaliana, ovule identity is redundantly conferred by the homeotic D-class genes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), phylogenetically related to the MADS-domain regulatory gene AGAMOUS (AG), essential in floral organ specification. Previous studies have shown that the HUA-PEP activity, comprised of a suite of RNA-binding protein (RBP) encoding genes, regulates AG pre-mRNA processing and thus flower patterning and organ identity. Here, we report that the HUA-PEP activity additionally governs ovule morphogenesis. Accordingly, in severe hua-pep backgrounds ovules transform into flower organ-like structures. These homeotic transformations are most likely due to the dramatic reduction in SHP1, SHP2 and STK activity. Our molecular and genome-wide profiling strategies revealed the accumulation of prematurely terminated transcripts of D-class genes in hua-pep mutants and reduced amounts of their respective functional messengers, which points to pre-mRNA processing misregulation as the origin of the ovule developmental defects in such backgrounds. RNA processing and transcription are coordinated by the RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD). Our results show that HUA-PEP activity members can interact with the CTD regulator C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 (CPL1), supporting a co-transcriptional mode of action for the HUA-PEP activity. Our findings expand the portfolio of reproductive developmental programs in which HUA-PEP activity participates, and further substantiates the importance of RNA regulatory mechanisms (pre-mRNA co-transcriptional regulation) for correct gene expression during plant morphogenesis.


Asunto(s)
Arabidopsis , Diferenciación Celular/genética , Óvulo Vegetal/fisiología , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Arabidopsis/embriología , Arabidopsis/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Morfogénesis/genética , Óvulo Vegetal/embriología , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética
3.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058667

RESUMEN

Plant meristems carry pools of continuously active stem cells, whose activity is controlled by developmental and environmental signals. After stem cell division, daughter cells that exit the stem cell domain acquire transit amplifying cell identity before they are incorporated into organs and differentiate. In this study, we used an integrated approach to elucidate the role of HECATE (HEC) genes in regulating developmental trajectories of shoot stem cells in Arabidopsis thaliana. Our work reveals that HEC function stabilizes cell fate in distinct zones of the shoot meristem thereby controlling the spatio-temporal dynamics of stem cell differentiation. Importantly, this activity is concomitant with the local modulation of cellular responses to cytokinin and auxin, two key phytohormones regulating cell behaviour. Mechanistically, we show that HEC factors transcriptionally control and physically interact with MONOPTEROS (MP), a key regulator of auxin signalling, and modulate the autocatalytic stabilization of auxin signalling output.


Asunto(s)
Arabidopsis/fisiología , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Vegetales/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Células Madre/fisiología , Genes de Plantas , Células Vegetales/efectos de los fármacos , Brotes de la Planta/fisiología , Células Madre/efectos de los fármacos , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 114(9): 2419-2424, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28202720

RESUMEN

Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1, and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G2/M cell-cycle marker gene, CYCB1;1 TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Ciclina B/genética , Ciclina B/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación del Desarrollo de la Expresión Génica , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...