Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 11(1): 6391, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319779

RESUMEN

Skin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish's color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Cromatóforos/fisiología , Cromatóforos/ultraestructura , Pigmentación de la Piel/fisiología , Piel/ultraestructura , Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/fisiología , Factor de Transcripción Asociado a Microftalmía , Mutagénesis , Piel/metabolismo , Pigmentación de la Piel/genética , Transcriptoma , Difracción de Rayos X , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Proc Natl Acad Sci U S A ; 116(24): 11806-11811, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31138706

RESUMEN

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.


Asunto(s)
Plasticidad de la Célula/genética , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Genética de Población/métodos , Melanóforos/fisiología , Mutación/genética , Cresta Neural/fisiología , Fenotipo , Pigmentación/genética , Transcriptoma/genética
4.
PLoS Genet ; 14(9): e1007538, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30226839

RESUMEN

Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)-a known melanogenic factor of tetrapods-as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates.


Asunto(s)
Cromatóforos/fisiología , Endotelina-3/metabolismo , Pigmentación/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Embrión no Mamífero , Endotelina-3/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Animales , Fenotipo , Transducción de Señal/genética , Piel/citología , Especificidad de la Especie , Proteínas de Pez Cebra/genética
5.
Elife ; 42015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26701906

RESUMEN

Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form.


Asunto(s)
Comunicación Celular , Cyprinidae/fisiología , Regulación de la Expresión Génica , Melanóforos/fisiología , Pigmentos Biológicos/metabolismo , Vesículas Secretoras/metabolismo , Transducción de Señal , Animales , Cyprinidae/genética
6.
Nat Commun ; 5: 5299, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25374113

RESUMEN

Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Comunicación Celular/fisiología , Melanocitos/citología , Pigmentación/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/fisiología , Masculino , Melanocitos/fisiología , Fenotipo , Transducción de Señal/genética , Transducción de Señal/fisiología , Especificidad de la Especie , Factores de Tiempo , Pez Cebra/clasificación
7.
Science ; 345(6202): 1358-61, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25170046

RESUMEN

Pigment patterns are useful for elucidating fundamental mechanisms of pattern formation and how these mechanisms evolve. In zebrafish, several pigment cell classes interact to generate stripes, yet the developmental requirements and origins of these cells remain poorly understood. Using zebrafish and a related species, we identified roles for thyroid hormone (TH) in pigment cell development and patterning, and in postembryonic development more generally. We show that adult pigment cells arise from distinct lineages having distinct requirements for TH and that differential TH dependence can evolve within lineages. Our findings demonstrate critical functions for TH in determining pigment pattern phenotype and highlight the potential for evolutionary diversification at the intersection of developmental and endocrine mechanisms.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Melanóforos/fisiología , Pigmentación de la Piel/fisiología , Hormonas Tiroideas/fisiología , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Melanóforos/citología , Melanóforos/efectos de los fármacos , Pigmentación de la Piel/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/farmacología
8.
Dev Biol ; 385(1): 13-22, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24184636

RESUMEN

In the developing brain, the production of neurons from multipotent precursors must be carefully regulated in order to generate the appropriate numbers of various differentiated neuronal types. Inductive signals from extrinsic elements such as growth factors need to be integrated with timely expression of intrinsic elements such as transcription factors that define the competence of the cell. The transcriptional Mediator complex offers a mechanism to coordinate the timing and levels of intrinsic and extrinsic influences by acting as a rapid molecular switch for transcription of poised RNA pol II. The epithalamus is a highly conserved region of the vertebrate brain that differentiates early and rapidly in the zebrafish. It includes the pineal and parapineal organs and the habenular nuclei. Mutation of the Mediator complex subunit Med12 impairs the specification of habenular and parapineal neurons and causes a loss of differentiation in pineal neurons and photoreceptors. Although FGF ligands and transcription factors for parapineal and photoreceptor development are still expressed in the pineal complex of med12 mutants, FGF signaling is impaired and transcription factor expression is reduced and/or delayed. We find that the timely expression of one of these transcription factors, tbx2b, is controlled by Med12 and is vital for parapineal specification. We propose that the Mediator complex is responsible for subtle but significant changes in transcriptional timing and amplitude that are essential for coordinating the development of neurons in the epithalamus.


Asunto(s)
Epitálamo/embriología , Complejo Mediador/metabolismo , Células-Madre Neurales/metabolismo , Proteínas de Dominio T Box/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , Epitálamo/anomalías , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Habénula/anomalías , Habénula/embriología , Complejo Mediador/genética , Glándula Pineal/anomalías , Glándula Pineal/embriología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transducción de Señal , Transcripción Genética , Activación Transcripcional , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
9.
Dev Biol ; 358(1): 251-61, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21840306

RESUMEN

The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei.


Asunto(s)
Diferenciación Celular/fisiología , Habénula/citología , Luz , Melatonina/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Pez Cebra/embriología , Animales , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de la radiación , Habénula/fisiología , Hibridación in Situ , Fotoperiodo , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...