Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Q ; 43(1): 1-10, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589252

RESUMEN

Recent research focused on farmed deer has exposed many knowledge gaps regarding health assessment protocols for white-tailed deer (WTD). The objectives of this study were to establish de novo blood analyte reference intervals for farmed WTD fawns at birth (1-2 days of age; n = 84) and again at weaning (76-125 days of age; n = 28), to compare data at birth and at weaning to understand how these analytes are affected by the intrinsic factors age and sex in clinically normal WTD fawns, and to compare between clinically normal and sick WTD weanlings (respiratory disease n = 12; orbivirus-infected n = 6). Reference intervals were established for WTD fawns at birth and weaning. Female WTD neonates had significantly higher red blood cell counts, hematocrit, and hemoglobin compared to males. Most blood analytes were significantly different in clinically normal WTD neonates compared to weanlings, suggesting an effect of age. The observed sex- and age-related variations in WTD highlight the need to establish reference intervals that account for intrinsic factors. The comparison of clinically normal and sick WTD weanlings in this study identified higher MCHC and absolute monocytes in sick weanlings but these findings were presumably not biologically relevant given the small sample size for sick fawns. While the reference interval data presented herein will be useful for the veterinary care of WTD fawns at critical time periods in a high-density farm setting, this study also demonstrates the need to identify more sensitive and specific biomarkers for the assessment of health status in farmed WTD with specific underlying diseases.


Asunto(s)
Ciervos , Femenino , Masculino , Animales , Destete , Granjas , Factores de Edad
2.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988091

RESUMEN

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Asunto(s)
Biodiversidad , Aves , Animales , Filogenia , Islas , Ecosistema
3.
Ecol Evol ; 13(1): e9761, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713493

RESUMEN

Body shape is a foundational trait on the differences between species. However, morphological measurements can be simplifying and, for many taxa, can be distorted upon preservation or are difficult to collect due to a species' habit or size. Scientific illustrations, or pictographs, provide information on a species' morphology but are rarely used as traits. Here, we demonstrate the use of pictographs using two shark clades: Lamniformes and Carcharhinidae + Sphyrnidae. After collecting 473 pictographs from 67 species across 12 sources, we used landmarking to show that measurements derived from pictographs do not substantially differ from those garnered from specimens. We then used Elliptical Fourier Analysis and principal components analysis to construct a multivariate morphospace. Using global shape measurements, we evaluated whether substantial variability in body shape was introduced by habitat association, endemism, or illustrator. We found that a species' habitat preference strongly influenced the discovery rate of pictographs and the within-species similarity. While illustrations varied within a species, only a limited set of illustrators exhibited significant systematic variability. We also demonstrated the utility of pictographs in two common applications. For ancestral trait reconstruction, we developed a simple extension to estimate body shapes from principal components and, in doing so, observed that the Lamnid body plan diverged from the rest of Lamniformes ~100 MYA. For phylogenetic generalized linear mixed models (PGLMM), we found that the pictographs had greater explanatory power than traditional morphological measurements. We used the PGLMM to show that higher endemism across Carcharhinidae + Sphyrnidae taxa correlates with body shapes that have caudal fins with small heterocercal angles and more pronounced second dorsal/anal fins. We concluded that pictographs are likely an undervalued and easy-to-digitize data source on a species' body shape with numerous established methods for comparing pictographs and assessing variability.

4.
Nat Ecol Evol ; 6(11): 1669-1675, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36123533

RESUMEN

Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m2) to plot (400 m2) and regional (5-214 km2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Cambio Climático
5.
mSystems ; 6(4): e0053021, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427534

RESUMEN

Microbiomes play essential roles in the health and function of animal and plant hosts and drive nutrient cycling across ecosystems. Integrating novel trait-based approaches with ecological theory can facilitate the prediction of microbial functional traits important for ecosystem functioning and health. In particular, the yield-acquisition-stress (Y-A-S) framework considers dominant microbial life history strategies across gradients of resource availability and stress. However, microbiomes are dynamic, and spatial and temporal shifts in taxonomic and trait composition can affect ecosystem functions. We posit that extending the Y-A-S framework to microbiomes during succession and across biogeographic gradients can lead to generalizable rules for how microbiomes and their functions respond to resources and stress across space, time, and diverse ecosystems. We demonstrate the potential of this framework by applying it to the microbiomes hosted by the carnivorous pitcher plant Sarracenia purpurea, which have clear successional trajectories and are distributed across a broad climatic gradient.

6.
Educ Technol Res Dev ; 69(3): 1405-1431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34075283

RESUMEN

Based on the achievement goal theory, this experimental study explored the influence of predictive and descriptive learning analytics dashboards on graduate students' motivation and statistics anxiety in an online graduate-level statistics course. Participants were randomly assigned into one of three groups: (a) predictive dashboard, (b) descriptive dashboard, or (c) control (i.e., no dashboard). Measures of motivation and statistical anxiety were collected in the beginning and the end of the semester via the Motivated Strategies for Learning Questionnaire and Statistical Anxiety Rating Scale. Individual semi-structured interviews were used to understand learners' perceptions of the course and whether the use of the dashboards influenced the meaning of their learning experiences. Results indicate that, compared to the control group, the predictive dashboard significantly reduced learners' interpretation anxiety and had an effect on intrinsic goal orientation that depended on learners' lower or higher initial levels of intrinsic goal orientation. In comparison to the control group, both predictive and descriptive dashboards reduced worth of anxiety (negative attitudes towards statistics) for learners who started the course with higher levels of worth anxiety. Thematic analysis revealed that learners who adopted a more performance-avoidance goal orientation approach demonstrated higher levels of anxiety regardless of the dashboard used. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11423-021-09998-z.

7.
Curr Biol ; 31(13): 2964-2971.e5, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34004144

RESUMEN

Pollination by animals is a key ecosystem service1,2 and interactions between plants and their pollinators are a model system for studying ecological networks,3,4 yet plant-pollinator networks are typically studied in isolation from the broader ecosystems in which they are embedded. The plants visited by pollinators also interact with other consumer guilds that eat stems, leaves, fruits, or seeds. One such guild, large mammalian herbivores, are well-known ecosystem engineers5-7 and may have substantial impacts on plant-pollinator networks. Although moderate herbivory can sometimes promote plant diversity,8 potentially benefiting pollinators, large herbivores might alternatively reduce resource availability for pollinators by consuming flowers,9 reducing plant density,10 and promoting somatic regrowth over reproduction.11 The direction and magnitude of such effects may hinge on abiotic context-in particular, rainfall, which modulates the effects of ungulates on vegetation.12 Using a long-term, large-scale experiment replicated across a rainfall gradient in central Kenya, we show that a diverse assemblage of native large herbivores, ranging from 5-kg antelopes to 4,000-kg African elephants, limited resource availability for pollinators by reducing flower abundance and diversity; this in turn resulted in fewer pollinator visits and lower pollinator diversity. Exclusion of large herbivores increased floral-resource abundance and pollinator-assemblage diversity, rendering plant-pollinator networks larger, more functionally redundant, and less vulnerable to pollinator extinction. Our results show that species extrinsic to plant-pollinator interactions can indirectly and strongly alter network structure. Forecasting the effects of environmental change on pollination services and interaction webs more broadly will require accounting for the effects of extrinsic keystone species.


Asunto(s)
Pradera , Herbivoria , Plantas , Polinización , África , Animales , Flores
8.
Ecology ; 102(5): e03308, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577089

RESUMEN

The importance of climate, habitat structure, and higher trophic levels on microbial diversity is only beginning to be understood. Here, we examined the influence of climate variables, plant morphology, and the abundance of aquatic invertebrates on the microbial biodiversity of the northern pitcher plant Sarracenia purpurea. The plant's cup-shaped leaves fill with rainwater and support a miniature, yet full-fledged, ecosystem with a diverse microbiome that decomposes captured prey and a small network of shredding and filter-feeding aquatic invertebrates that feed on microbes. We characterized pitcher microbiomes of 108 plants sampled at 36 sites from Florida to Quebec. Structural equation models revealed that annual precipitation and temperature, plant size, and midge abundance had direct effects on microbiome taxonomic and phylogenetic diversity. Climate variables also exerted indirect effects through plant size and midge abundance. Further, spatial structure and climate influenced taxonomic composition, but not phylogenetic composition. Our results suggest that direct effects of midge abundance and climate and indirect effects of climate through its effect on plant-associated factors lead to greater richness of microbial phylotypes in warmer, wetter sites.


Asunto(s)
Microbiota , Sarraceniaceae , Ecosistema , Florida , Cadena Alimentaria , Interacciones Microbianas , Filogenia , Quebec
9.
Proc Biol Sci ; 287(1929): 20200777, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546087

RESUMEN

To better understand how ecosystems are changing, a multifaceted approach to measuring biodiversity that considers species richness (SR) and evolutionary history across spatial scales is needed. Here, we compiled 162 datasets for fish, bird and plant assemblages across the globe and measured how taxonomic and phylogenetic diversity changed at different spatial scales (within site α diversity and between sites spatial ß diversity). Biodiversity change is measured from these datasets in three ways: across land use gradients, from species lists, and through sampling of the same locations across two time periods. We found that local SR and phylogenetic α diversity (Faith's PD (phylogenetic diversity)) increased for all taxonomic groups. However, when measured with a metric that is independent of SR (phylogenetic species variation, PSV), phylogenetic α diversity declined for all taxonomic groups. Land use datasets showed declines in SR, Faith's PD and PSV. For all taxonomic groups and data types, spatial taxonomic and phylogenetic ß diversity decreased when measured with Sorensen dissimilarity and phylogenetic Sorensen dissimilarity, respectively, providing strong evidence of global biotic homogenization. The decoupling of α and ß diversity, as well as taxonomic and phylogenetic diversity, highlights the need for a broader perspective on contemporary biodiversity changes. Conservation and environmental policy decisions thus need to consider biodiversity beyond local SR to protect biodiversity and ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Evolución Biológica , Aves , Peces , Filogenia , Plantas
10.
Nat Ecol Evol ; 3(12): 1661-1667, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31712691

RESUMEN

Plant and animal phenology is shifting in response to urbanization, with most hypotheses focusing on the 'urban heat island' (UHI) effect as the driver. However, generalities regarding the direction and magnitude of phenological response to urbanization have not yet emerged because most studies have focused on remote-sensed vegetative phenologies or at local scales with relatively few species. Furthermore, how urbanization interacts with broad-scale climate gradients remains an unknown but important component of anthropogenically driven phenological change. Here, we used a database with >22 million in situ plant phenological observations from the United States and Europe to study the joint influence of varying human population density, which serves as an urbanization measure, and of regional temperature on median flowering and leaf-out dates across a wide plant phylogenetic spectrum. Separately, increasing population density and warmer regional temperature both advanced plant flowering and leaf-out. However, the influence of human population density on plant flowering and leaf-out depends on the regional temperature: high population density advanced plant phenology in cold areas but this effect disappeared or even reversed in warm areas. UHI effects (as measured by daily land surface temperature) alone cannot explain the overall influence of urbanization on plant phenology, suggesting that urbanization also affects plant phenology via other mechanisms. Shorter plants with large specific leaf areas and early flower or leaf-out dates were most affected by urbanization and temperature changes. Our study provides strong empirical evidence that the influence of urbanization on plant phenology varies with regional temperature. Therefore, robust understanding and accurate prediction of phenological changes must take this interaction into account.


Asunto(s)
Cambio Climático , Urbanización , Animales , Europa (Continente) , Humanos , Filogenia , Estaciones del Año , Temperatura , Estados Unidos
11.
Ecology ; 100(9): e02788, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31225900

RESUMEN

Should we build our own phylogenetic trees based on gene sequence data, or can we simply use available synthesis phylogenies? This is a fundamental question that any study involving a phylogenetic framework must face at the beginning of the project. Building a phylogeny from gene sequence data (purpose-built phylogeny) requires more effort, expertise, and cost than subsetting an already available phylogeny (synthesis-based phylogeny). However, we still lack a comparison of how these two approaches to building phylogenetic trees influence common community phylogenetic analyses such as comparing community phylogenetic diversity and estimating trait phylogenetic signal. Here, we generated three purpose-built phylogenies and their corresponding synthesis-based trees (two from Phylomatic and one from the Open Tree of Life, OTL). We simulated 1,000 communities and 12,000 continuous traits along each purpose-built phylogeny. We then compared the effects of different trees on estimates of phylogenetic diversity (alpha and beta) and phylogenetic signal (Pagel's λ and Blomberg's K). Synthesis-based phylogenies generally yielded higher estimates of phylogenetic diversity when compared to purpose-built phylogenies. However, resulting measures of phylogenetic diversity from both types of phylogenies were highly correlated (Spearman's ρ  > 0.8 in most cases). Mean pairwise distance (both alpha and beta) is the index that is most robust to the differences in tree construction that we tested. Measures of phylogenetic diversity based on the OTL showed the highest correlation with measures based on the purpose-built phylogenies. Trait phylogenetic signal estimated with synthesis-based phylogenies, especially from the OTL, was also highly correlated with estimates of Blomberg's K or close to Pagel's λ from purpose-built phylogenies when traits were simulated under Brownian motion. For commonly employed community phylogenetic analyses, our results justify taking advantage of recently developed and continuously improving synthesis trees, especially the Open Tree of Life.


Asunto(s)
Filogenia
12.
Am J Bot ; 105(10): 1735-1747, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30300935

RESUMEN

PREMISE OF THE STUDY: Community phylogenetic methods incorporate information on evolutionary relationships into studies of organismal assemblages. We used a community phylogenetic framework to investigate relationships and biogeographic affinities and to calculate phylogenetic signal of endemism and invasiveness for the flora of the pine rocklands-a globally critically imperiled ecosystem with a significant portion of its distribution in South Florida, United States. METHODS: We reconstructed phylogenetic relationships of 538 vascular plant taxa, which represent 92.28% of the vascular flora of the pine rocklands. We estimated phylogenetic signal for endemism and invasiveness using phylogenetic generalized linear mixed models. We determined the native range for each species in the data set and calculated the total number of species sourced from each region and all possible combinations of these regions. KEY RESULTS: The pine rockland flora includes representatives of all major vascular plant lineages, and most species have native ranges in the New World. There was strong phylogenetic signal for endemism, but not for invasiveness. CONCLUSIONS: Community phylogenetics has high potential value for conservation planning, particularly for fragmented and endangered ecosystems like the pine rockland. Strong phylogenetic signal for endemic species in our data set, which also tend to be threatened or endangered, can help to identify species at risk, as well as fragments where those species occur, highlighting conservation priorities. Our results indicate, at least in the pine rockland ecosystem, no phylogenetic signal for invasive species, and thus other information must be used to predict the potential for invasiveness.


Asunto(s)
Evolución Biológica , Biota , Embryophyta/fisiología , Dispersión de las Plantas , Conservación de los Recursos Naturales , Ecosistema , Embryophyta/clasificación , Florida , Filogenia
13.
Am J Bot ; 105(3): 549-564, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29730880

RESUMEN

PREMISE OF THE STUDY: Many ecological and evolutionary processes shape the assembly of organisms into local communities from a regional pool of species. We analyzed phylogenetic and functional diversity to understand community assembly of the ferns of Florida at two spatial scales. METHODS: We built a phylogeny for 125 of the 141 species of ferns in Florida using five chloroplast markers. We calculated mean pairwise dissimilarity (MPD) and mean nearest taxon distance (MNTD) from phylogenetic distances and functional trait data for both spatial scales and compared the results to null models to assess significance. KEY RESULTS: Our results for over vs. underdispersion in functional and phylogenetic diversity differed depending on spatial scale and metric considered. At the county scale, MPD revealed evidence for phylogenetic overdispersion, while MNTD revealed phylogenetic and functional underdispersion, and at the conservation area scale, MPD revealed phylogenetic and functional underdispersion while MNTD revealed evidence only of functional underdispersion. CONCLUSIONS: Our results are consistent with environmental filtering playing a larger role at the smaller, conservation area scale. The smaller spatial units are likely composed of fewer local habitat types that are selecting for closely related species, with the larger-scale units more likely to be composed of multiple habitat types that bring together a larger pool of species from across the phylogeny. Several aspects of fern biology, including their unique physiology and water relations and the importance of the independent gametophyte stage of the life cycle, make ferns highly sensitive to local, microhabitat conditions.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Helechos/genética , Filogenia , Adaptación Biológica , Cloroplastos , Florida , Células Germinativas de las Plantas , Modelos Biológicos , Fenotipo , Fenómenos Fisiológicos de las Plantas , Análisis Espacial , Especificidad de la Especie , Agua
14.
Biol Lett ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29367214

RESUMEN

Ecologists have often predicted that species' niche breadths should decline towards the Equator. Dan Janzen arrived at this prediction based on climatic constraints, while Robert MacArthur argued that a latitudinal gradient in resource specialization drives the pattern. This idea has some support when it comes to thermal niches, but has rarely been explored for other niche dimensions. Body size is linked to niche dimensions related to diet, competition and environmental tolerance in vertebrates. We identified 68 pairs of tropical and nontropical sister bird species using a comprehensive phylogeny and used the VertNet specimen database to ask whether tropical birds have lower intraspecific body-size variation than their nontropical sister species. Our results show that tropical species have less intraspecific variability in body mass ([Formula: see text]; p = 0.009). Variation in body-size variability was poorly explained by both abiotic and biotic drivers; thus the mechanisms underlying the pattern are still unclear. The lower variation in body size of tropical bird species may have evolved in response to more stable climates and resource environments.


Asunto(s)
Variación Biológica Poblacional/fisiología , Aves/anatomía & histología , Aves/fisiología , Tamaño Corporal/fisiología , Clima Tropical , Animales , Aves/clasificación , Dieta , Ambiente , Filogenia
15.
Ecol Lett ; 17(12): 1591-601, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25328064

RESUMEN

We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site-specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances.


Asunto(s)
Biodiversidad , Modelos Estadísticos , Simulación por Computador , Costa Rica , Indiana , Minnesota , Árboles
16.
Proc Natl Acad Sci U S A ; 110(19): 7742-7, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23613583

RESUMEN

Slow changes in underlying state variables can lead to "tipping points," rapid transitions between alternative states ("regime shifts") in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ~45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes.


Asunto(s)
Ecosistema , Compuestos Orgánicos/química , Sarraceniaceae/metabolismo , Atmósfera , Ambiente , Modelos Biológicos , Modelos Estadísticos , Oxígeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Temperatura , Factores de Tiempo
17.
Proc Biol Sci ; 279(1748): 4772-7, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23055062

RESUMEN

Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.


Asunto(s)
Biota , Especies Introducidas , Modelos Teóricos , Análisis de Varianza , Animales , Biodiversidad , Bases de Datos Factuales , Extinción Biológica , Filogeografía , Plantas
18.
PLoS One ; 6(5): e20672, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673992

RESUMEN

Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.


Asunto(s)
Biodiversidad , Biota , Ecosistema , Cadena Alimentaria , Animales , Biomasa , Culicidae/fisiología , Euglenozoos/fisiología , Dinámica Poblacional , Conducta Predatoria , Sarraceniaceae/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...