Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuropathol Exp Neurol ; 81(8): 614-620, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35763058

RESUMEN

Aging is a major risk factor for cerebral infarction. Since cellular senescence is intrinsic to aging, we postulated that stroke-induced cellular senescence might contribute to neural dysfunction. Adult male Wistar rats underwent 60-minute middle cerebral artery occlusion and were grouped according to 3 reperfusion times: 24 hours, 3, and 7 days. The major biomarkers of senescence: 1) accumulation of the lysosomal pigment, lipofuscin; 2) expression of the cell cycle arrest markers p21, p53, and p16INK4a; and 3) expression of the senescence-associated secretory phenotype cytokines interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-1ß (IL-1ß) were investigated in brain samples. Lipofuscin accumulation was scarce at the initial stage of brain damage (24 hours), but progressively increased until it reached massive distribution at 7 days post-ischemia. Lipofuscin granules (aggresomes) were mainly confined to the infarcted areas, that is parietal cortex and adjacent caudate-putamen, which were equally affected. The expression of p21, p53, and p16INK4a, and that of IL-6, TNF-α, and IL-1ß, was significantly higher in the ischemic hemisphere than in the non-ischemic hemisphere. These data indicate that brain cell senescence develops during acute ischemic infarction and suggest that the acute treatment of ischemic stroke might be enhanced using senolytic drugs.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Encéfalo/patología , Isquemia Encefálica/metabolismo , Senescencia Celular , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-6 , Lipofuscina/metabolismo , Masculino , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa , Proteína p53 Supresora de Tumor/metabolismo
2.
J Stroke ; 23(3): 327-342, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34649378

RESUMEN

Mechanical thrombectomy renders the occluding clot available for analysis. Insights into thrombus composition could help establish the stroke cause. We aimed to investigate the value of clot composition analysis as a complementary diagnostic tool in determining the etiology of large vessel occlusion (LVO) ischemic strokes (International Prospective Register of Systematic Reviews [PROSPERO] registration # CRD42020199436). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we ran searches on Medline (using the PubMed interface) and Web of Science for studies reporting analyses of thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy (January 1, 2006 to September 21, 2020). The PubMed search was updated weekly up to February 22, 2021. Reference lists of included studies and relevant reviews were hand-searched. From 1,714 identified studies, 134 eligible studies (97 cohort studies, 31 case reports, and six case series) were included in the qualitative synthesis. Physical, histopathological, biological, and microbiological analyses provided information about the gross appearance, mechanical properties, structure, and composition of the thrombi. There were non-unanimous associations of thrombus size, structure, and composition (mainly proportions of fibrin and blood formed elements) with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) etiology and underlying pathologies, and similarities between cryptogenic thrombi and those of known TOAST etiology. Individual thrombus analysis contributed to the diagnosis, mainly in atypical cases. Although cohort studies report an abundance of quantitative rates of main thrombus components, a definite clot signature for accurate diagnosis of stroke etiology is still lacking. Nevertheless, the qualitative examination of the embolus remains an invaluable tool for diagnosing individual cases, particularly regarding atypical stroke causes.

3.
Mol Neurobiol ; 58(1): 408-423, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32959172

RESUMEN

Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.


Asunto(s)
Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Neuroprotección/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ácido Úrico/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Edema Encefálico/etiología , Edema Encefálico/patología , Edema Encefálico/fisiopatología , Infarto Encefálico/etiología , Infarto Encefálico/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Úrico/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
J Cereb Blood Flow Metab ; 41(4): 707-722, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210575

RESUMEN

Addition of uric acid (UA) to thrombolytic therapy, although safe, showed limited efficacy in improving patients' stroke outcome, despite alleged neuroprotective effects of UA in preclinical research. This systematic review assessed the effects of UA on brain structural and functional outcomes in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 16 and 14 eligible rodent studies for qualitative and quantitative synthesis, respectively. Range of evidence met 10 of a possible 13 STAIR criteria. Median (Q1, Q3) quality score was 7.5 (6, 10) on the CAMARADES 15-item checklist. For each outcome, we used standardised mean difference (SMD) as effect size and random-effects modelling. Meta-analysis showed that UA significantly reduced infarct size (SMD: -1.18; 95% CI [-1.47, -0.88]; p < 0.001), blood-brain barrier (BBB) impairment/oedema (SMD: -0.72; 95% CI [-0.97, -0.48]; p < 0.001) and neurofunctional deficit (SMD: -0.98; 95% CI [-1.32, -0.63]; p < 0.001). Overall, there was low to moderate between-study heterogeneity and sizeable publication bias. In conclusion, published rodent data suggest that UA improves outcome following ischemic stroke by reducing infarct size, improving BBB integrity and ameliorating neurofunctional condition. Specific recommendations are given for further high-quality preclinical research required to better inform clinical research.


Asunto(s)
Fibrinolíticos/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Terapia Trombolítica/métodos , Ácido Úrico/uso terapéutico , Animales , Fibrinolíticos/farmacología , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Ratones , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Ratas , Recuperación de la Función , Ácido Úrico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...