Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 116(44): 10656-67, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23078350

RESUMEN

The photodissociation dynamics of halogen-substituted thiophenes, namely, 2-chlorothiophene and 2-bromo-5-chlorothiophene, has been studied in a supersonic molecular beam around 235 nm, using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique, by detecting the nascent state of the primary halogen atoms. A single laser has been used for excitation of halothiophenes, as well as for the REMPI detection of photoproducts, namely, chlorine and bromine atoms, in their spin-orbit states X((2)P(3/2)) and X*((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio, for chlorine and bromine atom elimination channels. State-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies, ß(ι). The TOF profiles for Cl, Cl*, Br, and Br* are found to be independent of laser polarization; i.e., the ß is well characterized by a value of ~0.0, within the experimental uncertainties. For 2-chlorothiophene, we have observed two components for the Cl and only one component for the Cl* atom elimination channel in the translational energy distributions. The average translational energies for the fast and the slow components of the Cl channel are 3.0 ± 1.0 and 1.0 ± 0.5 kcal/mol, respectively. For Cl*, the average translational energy is 3.5 ± 1.0 kcal/mol. For 2-bromo-5-chlorothiophene, we have observed only one component for Cl, Cl*, Br, and Br* in the translational energy distributions. The average translational energies for the Cl and Cl* channels are 3.5 ± 1.0 and 5.0 ± 1.0 kcal/mol, respectively, whereas the average translational energies for the Br and Br* channels are 2.0 ± 1.0 and 3.5 ± 1.0 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. The ΔH(f)(298) value for 2-chlorothiophene has been estimated theoretically to be 23.5 kcal/mol.


Asunto(s)
Halógenos/química , Procesos Fotoquímicos , Tiofenos/química , Teoría Cuántica , Espectrometría de Masa por Ionización de Electrospray , Factores de Tiempo
2.
Carbohydr Polym ; 89(3): 906-13, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24750879

RESUMEN

A simple one-pot method for in situ synthesis of silver nanoparticles (AgNPs), within polyvinyl alcohol/gum acacia (PVA-GA) hydrogel matrix, by gamma radiation-induced cross-linking is reported here. The synthesized hydrogels were characterized by FT-IR, thermogravimetry, dynamic light scattering and inductively coupled mass spectrometry method. The thermal stability was found to be more for the hydrogel loaded with silver nanoparticles and also the percentage silver loading was found to increase with increase in cross-linking density. The influence of gum acacia (GA) concentration on the equilibrium degree of swelling of the synthesized hydrogels, and also on the silver release from hydrogel matrix, was investigated. The size of the silver nanoparticles formed in the hydrogel matrix was in the range of 10-40 nm. The rheological gel point was found to be at 25.34 kGy of radiation dose, for a typical hydrogel synthesized, using 5% GA, 3% PVA and 1mM AgNO3. The antibacterial studies of the synthesized nanosilver-containing hydrogels showed good antibacterial activity against gram-negative bacterium, Escherichia coli.


Asunto(s)
Antibacterianos/farmacología , Hidrogeles/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/química , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Phys Chem A ; 115(9): 1538-46, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21322536

RESUMEN

The photodissociation dynamics of fumaryl chloride (ClCO-CH═CH-COCl) has been studied in a supersonic molecular beam around 235 nm using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique by detecting the nascent state of the primary chlorine atom. A single laser has been used for excitation of fumaryl chloride and the REMPI detection of chlorine atoms in their spin-orbit states, Cl ((2)P(3/2)) and Cl* ((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, ß, and the spin-orbit branching ratio for chlorine atom elimination channels. To obtain these, measured polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment recoil anisotropies, ß(i). The TOF profiles for both Cl and Cl* are found to be independent of laser polarization; i.e., ß is well characterized by a value of 0.0, within the experimental uncertainties. Two components, namely, the fast and the slow, are observed in the translational energy distribution, P(E(T)), of Cl and Cl* atoms, and assigned to be formed from different potential energy surfaces. The average translational energies for the fast components of the Cl and Cl* channels are 14.9 ± 1.6 and 16.8 ± 1.6 kcal/mol, respectively. Similarly, for the slow components, the average translational energies of the Cl and Cl* channels are 3.4 ± 0.8 and 3.1 ± 0.8 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. Apart from the chlorine atom elimination channel, molecular hydrogen chloride (HCl) elimination is also observed in the photodissociation process. The HCl product has been detected, using a REMPI scheme in the region of 236-237 nm. The observation of the molecular HCl in the dissociation process highlights the importance of the relaxation process, in which the initially excited parent molecule relaxes to the ground state from where the molecular (HCl) elimination takes place.

4.
J Phys Chem A ; 114(16): 5271-8, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20373808

RESUMEN

The photodissociation dynamics of phosphorus trichloride (PCl(3)) has been studied in a supersonic beam by resonance enhanced multiphoton ionization (REMPI), using time-of-flight (TOF) mass spectrometry. The study is focused on the nascent state of the primary chlorine atom, formed on excitation of the (n, sigma*) transition of the molecule around 235 nm. Dissociation of PCl(3) and the REMPI detection of chlorine atoms are performed, using the same laser around 235 nm. The photofragments, namely, Cl((2)P(3/2)) and Cl*((2)P(1/2)), are probed, using the 2+1 REMPI scheme in the 234-236 nm region. We have determined the photofragment speed distribution, the recoil anisotropy parameter beta, and the spin-orbit branching ratio for chlorine atom elimination channels. Polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment anisotropies. The anisotropy parameters for Cl and Cl* are characterized by values of 0.0 +/- 0.05 and 0.20 +/- 0.05, respectively. Two components, namely, the fast and the slow, are observed in the speed distribution (P(v)) of Cl and Cl* atoms, formed from different potential energy surfaces. The average translational energies for the Cl and Cl* channels for the fast component are 29.7 and 30.6 kcal/mol, respectively. Similarly, for the slow component, the average translational energies for the Cl and Cl* channels are 9.5 and 9.1 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of an impulsive model, for the fast component, and a statistical model, for the slow component. Apart from the chlorine atom elimination channel, molecular chlorine (Cl(2)) elimination is also observed in the photodissociation of PCl(3). The observation of the molecular chlorine in the dissociation process and the bimodal translational energy distribution of the chlorine atom clearly indicate the existence of a crossover mechanism from the initially prepared state to the ground state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...