Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Drug Alcohol Depend ; 256: 111116, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364647

RESUMEN

BACKGROUND: Alcohol use disorders are prevalent mental disorders with significant health implications. Epigenetic alterations may play a role in their pathogenesis, as DNA methylation at several genes has been associated with these disorders. We have previously shown that methylation in the DLGAP2 gene, coding for a synaptic density protein, is associated with alcohol dependence. In this study, we aimed to examine the association between DLGAP2 methylation and treatment response among patients undergoing acamprosate treatment. METHODS: 102 patients under acamprosate treatment were included. DNA methylation analysis at DLGAP2 was performed by bisulfite pyrosequencing at the start and after 3-month treatment. Treatment outcomes were having a relapse during the treatment and severity of craving at the end of three months. Cox proportional hazard and linear regression models were performed. RESULTS: Patients whose methylation levels were decreased during the treatment showed an increased risk for relapse within three months in comparison to the ones without methylation change (hazard ratio [HR]=2.44; 95% confidence interval [CI]=1.04, 5.73; p=0.04). For the same group, a positive association for the severity of craving was observed, yet statistical significance was not reached (ß=2.97; 95% CI=-0.41, 6.34; p=0.08). CONCLUSION: We demonstrate that patients whose DLGAP2 methylation levels decrease during acamprosate treatment are more likely to relapse compared to the ones without changes. This is in line with our previous findings showing that DLGAP2 methylation is lower in alcohol dependent subjects compared to controls, and might suggest a role for changes in DLGAP2 methylation in treatment response.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Acamprosato , Metilación de ADN , Enfermedad Crónica , Recurrencia , Proteínas del Tejido Nervioso
2.
Alcohol Clin Exp Res (Hoboken) ; 48(2): 250-259, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38276909

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.

3.
Cell Mol Life Sci ; 79(11): 545, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36219330

RESUMEN

Each cerebral hemisphere is functionally connected to the contralateral side of the body through the decussating neural tracts. The crossed neural pathways set a basis for contralateral effects of brain injury such hemiparesis and hemiplegia as it has been already noted by Hippocrates. Recent studies demonstrated that, in addition to neural mechanisms, the contralateral effects of brain lesions are mediated through the humoral pathway by neurohormones that produce either the left or right side-specific effects. The side-specific humoral signaling defines whether the left or right limbs are affected after a unilateral brain injury. The hormonal signals are released by the pituitary gland and may operate through their receptors that are lateralized in the spinal cord and involved in the side-specific control of symmetric neurocircuits innervating the left and right limbs. Identification of features and a proportion of neurological deficits transmitted by neurohormonal signals vs. those mediated by neural pathways is essential for better understanding of mechanisms of brain trauma and stroke and development of new therapies. In a biological context, the left-right side-specific neuroendocrine signaling may be fundamental for the control of the left- and right-sided processes in bilaterally symmetric animals.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Animales , Encéfalo , Extremidades , Médula Espinal
4.
Transl Psychiatry ; 12(1): 190, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523767

RESUMEN

Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR < 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.


Asunto(s)
Alcoholismo , Estriado Ventral , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , ADN , Humanos , Inflamación
6.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34372969

RESUMEN

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones ß-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.


Brain trauma or a stroke often lead to severe problems in posture and movement. These injuries frequently occur only on one side, causing asymmetrical motor changes: damage to the left brain hemisphere triggers abnormal contractions of the right limbs, and vice-versa. The injuries can disrupt neural tracts between the brain and the spinal cord, the structure that conveys electric messages to muscles. However, research has also shed light on new actors: the hormones released into the bloodstream by the pituitary gland. Similar to the effects of brain lesions, several of these molecules cause asymmetric posture in healthy rats. In fact, a group of hormones can trigger muscle contraction of the left back leg, and another of the right one. Could pituitary hormones mediate the asymmetric effects of brain injuries? To investigate this question, Lukoyanov, Watanabe, Carvalho, Kononenko, Sarkisyan et al. focused on rats in which the connection between the brain and the spinal cord segments that control the hindlimbs had been surgically removed. This stopped transmission of electric messages from the brain to muscles in the back legs. Strikingly, lesions on one side of the brain in these animals still led to asymmetric posture, with contraction of the leg on the opposite side of the body. These effects were abolished when the pituitary gland was excised. Postural asymmetry also emerged when blood serum from injured rats was injected into healthy animals. The findings suggest that hormones play an essential role in signalling from the brain to the spinal cord. Further experiments identified that two pituitary hormones, ß-endorphin and Arg-vasopressin, induced contraction of the right but not the left hindlimb of healthy animals. In addition, small molecules that inhibit these hormones could block the deficits seen on the right side after an injury on the left hemisphere of the brain. Taken together, these results show that neurons in the spinal cord are not just controlled by the neural tracts that descend from the brain, but also by hormones which have left-right side-specific actions. This unique signalling could be a part of a previously unknown hormonal mechanism that selectively targets either the left or the right side of the body. This knowledge could help to design side-specific treatments for stroke and brain trauma.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Vías Nerviosas/fisiología , Reflejo , Corteza Sensoriomotora/fisiología , Animales , Lesiones Encefálicas/metabolismo , Masculino , Vías Nerviosas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar
7.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200173

RESUMEN

Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.


Asunto(s)
Encéfalo/metabolismo , Encefalinas/genética , Epigénesis Genética/genética , Precursores de Proteínas/genética , Transcripción Genética/genética , Analgésicos Opioides/metabolismo , Animales , Epigenómica/métodos , Regulación de la Expresión Génica/genética , Humanos , Neuropéptidos/genética
8.
Front Genet ; 12: 662843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149804

RESUMEN

Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.

9.
Eur J Neurosci ; 54(4): 5560-5573, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145943

RESUMEN

In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.


Asunto(s)
Lesiones Encefálicas , Renina , Analgésicos Opioides , Angiotensinas , Animales , Ratas , Médula Espinal
10.
Exp Brain Res ; 239(7): 2221-2232, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34021800

RESUMEN

Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Traumatismos de la Médula Espinal , Animales , Lateralidad Funcional , Miembro Posterior , Ratas
11.
Eur J Neurosci ; 53(11): 3621-3633, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33884684

RESUMEN

Effects of environmental factors may be transmitted to the following generation, and cause neuropsychiatric disorders including depression, anxiety, and posttraumatic stress disorder in the offspring. Enhanced synaptic plasticity induced by environmental enrichment may be also transmitted. We here test the hypothesis that the effects of brain injury in pregnant animals may produce neurological deficits in the offspring. Unilateral brain injury (UBI) by ablation of the hindlimb sensorimotor cortex in pregnant rats resulted in the development of hindlimb postural asymmetry (HL-PA), and impairment of balance and coordination in beam walking test in the offspring. The offspring of rats with the left UBI exhibited HL-PA before and after spinal cord transection with the contralesional (i.e., right) hindlimb flexion. The right UBI caused the offspring to develop HL-PA that however was cryptic and not-lateralized; it was evident only after spinalization, and was characterized by similar occurrence of the ipsi- and contralesional hindlimb flexion. The HL-PA persisted after spinalization suggesting that the asymmetry was encoded in lumbar spinal neurocircuits that control hindlimb muscles. Balance and coordination were affected by the right UBI but not the left UBI. Thus, the effects of a unilateral brain lesion in pregnant animals may be intergenerationally transmitted, and this process may depend on the side of brain injury. The results suggest the existence of left-right side-specific mechanisms that mediate transmission of the lateralized effects of brain trauma from mother to fetus.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Traumatismos de la Médula Espinal , Animales , Lesiones Encefálicas/etiología , Femenino , Miembro Posterior , Plasticidad Neuronal , Embarazo , Ratas
12.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33903183

RESUMEN

Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contralesional sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contralesional and ipsilesional hindlimb responses to the left-sided and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus, the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The µ-antagonist ß-funaltrexamine (FNA) and κ-antagonist nor-binaltorphimine (BNI) reduced postural asymmetry after the right but not left UBI. In contrast, the δ-antagonist naltrindole (NTI) inhibited HL-PA after the left but not right-side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system.


Asunto(s)
Lesiones Encefálicas , Neuropéptidos , Animales , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas , Receptores Opioides mu , Médula Espinal
13.
Mol Psychiatry ; 26(8): 4367-4382, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31745236

RESUMEN

Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo/genética , Metilación de ADN , Epigénesis Genética , Proteínas del Tejido Nervioso/genética , Consumo de Bebidas Alcohólicas/genética , Animales , Epigenoma , Genotipo , Ratones
14.
Mol Psychiatry ; 26(8): 3884-3895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31811260

RESUMEN

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


Asunto(s)
Metilación de ADN , Epigenoma , Islas de CpG , Metilación de ADN/genética , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos
15.
J Neurotrauma ; 38(12): 1679-1688, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33191850

RESUMEN

Traumatic brain injury (TBI) is an established risk factor for neurodegenerative disorders and dementias. Epigenetic modifications, such as DNA methylation, may alter the expression of genes without altering the DNA sequence in response to environmental factors. We hypothesized that DNA methylation changes may occur in the injured human brain and be implicated in the neurodegenerative aftermath of TBI. The DNA methylation status of genes related to neurodegeneration; for example, amyloid beta precursor protein (APP), microtubule associated protein tau (MAPT), neurofilament heavy (NEFH), neurofilament medium (NEFM), and neurofilament light (NEFL), was analyzed in fresh, surgically resected human brain tissue from 17 severe TBI patients and compared with brain biopsy samples from 19 patients with idiopathic normal pressure hydrocephalus (iNPH). We also performed an epigenome-wide association study (EWAS) comparing TBI patients with iNPH controls. Thirty-eight CpG sites in the APP, MAPT, NEFH, and NEFL genes were differentially methylated by TBI. Among the top 20 differentially methylated CpG sites, 11 were in the APP gene. In addition, the EWAS evaluating 828,888 CpG sites revealed 308 differentially methylated CpG sites in genes related to cellular/anatomical structure development, cell differentiation, and anatomical morphogenesis. These preliminary findings provide the first evidence of an altered DNA methylome in the injured human brain, and may have implications for the neurodegenerative disorders associated with TBI.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Lesiones Traumáticas del Encéfalo/genética , Metilación de ADN/genética , Filamentos Intermedios/genética , Proteínas tau/genética , Adulto , Anciano , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad
16.
Brain Commun ; 2(2): fcaa208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364602

RESUMEN

Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in the formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here, we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centred over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist ß-funaltrexamine blocked the formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist (2)-(trans)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited the formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by different subtypes of opioid receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.

17.
Brain Commun ; 2(1): fcaa055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954305

RESUMEN

Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.

18.
Brain Res ; 1717: 182-189, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31028728

RESUMEN

Nociceptive discharges caused by the unilateral tissue damage are processed in the spinal cord by both ipsi- and contralateral neuronal circuits. The mechanisms of the neurotransmitter control of this bilateral excitation spread is poorly understood. Spinally administered opiates are known to suppress nociceptive transmission and nociceptive withdrawal reflexes. Here we investigated whether three major types of opioid receptors are involved in the bilateral control of the spinal nociceptive sensorimotor processing. Effects of the µ-, δ- and κ-opioid receptor agonists on the ipsi- and contralateral nociceptive reflexes were studied by recording slow ventral root potentials in an isolated spinal cord preparation of the new-born rat. Absolute levels of expression of the opioid genes were analyzed by the droplet digital PCR. Ipsi- and contralateral slow ventral root potentials were most strongly suppressed by the µ-opioid receptor agonist DAMGO, by 63% and 85%, followed by the κ-opioid receptor agonist U-50488H, by 44% and 73%, and δ-opioid receptor agonist leucine-enkephalin, by 27% and 49%, respectively. All these agonists suppressed stronger contra- than ipsilateral responses. Naloxone prevented effects of the agonists indicating that they act through opioid receptors, which, as we show, are expressed in the neonatal spinal cord at the levels similar to those in adults. Thus, opioid receptor agonists suppress the segmental nociceptive reflexes. Stronger contralateral effects suggest that the endogenous opioid system regulates sensorimotor processing in the spinal commissural pathways. These effects of opioids may be relevant for treatment of symmetric clinical pain symptoms caused by unilateral tissue injury.


Asunto(s)
Nociceptores/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Animales Recién Nacidos , Femenino , Masculino , Morfina/farmacología , Naloxona/farmacología , Dolor/tratamiento farmacológico , Ratas , Ratas Wistar , Receptores Opioides/fisiología , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Reflejo/efectos de los fármacos , Médula Espinal/metabolismo
19.
Drug Alcohol Depend ; 197: 183-190, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840924

RESUMEN

BACKGROUND: Sex-related differences in the susceptibility, progression, and treatment response in alcohol-dependent subjects have been repeatedly reported. In this study, we aimed to investigate the associations of the sex-related hormone/protein levels with alcohol dependence (AD) and alcohol craving in male and female subjects. METHODS: Plasma sex-related hormones (estradiol, estrone, total testosterone, progesterone, follicle stimulated hormone [FSH], luteinizing hormone), and sex hormone binding globulin were measured by mass spectrometry or automated immunoassays from 44 recently-abstained subjects (29 males and 15 females; mean age = 45.9 ± 15.6) meeting DSM-IV-TR criteria for AD and 44 age-, sex- and race-matched non-AD controls. Conditional logistic regression was conducted to examine the association of sex-related hormone and protein levels with AD risk, accounting for matching variables. Their associations with alcohol craving scales (Penn Alcohol Craving Scale and Inventory of Drug-Taking Situations) were assessed in AD subjects. RESULTS: Plasma FSH level was significantly higher in AD males (10.3 ± 9.8 IU/L) than control males (8.0 ± 15.9 IU/L; p = 0.005, pcorrected = 0.035). We also found a significant inverse correlation of FSH level with propensity to drink in negative emotional situations (Spearman's rho=-.540; p = 0.021) and positive correlations between progesterone level and craving intensity (Spearman's rho=.464; p = 0.020) and between total testosterone level and propensity to drink under temptations (adjusted for no-drinking days; ß=6.496; p = 0.041) in AD males. CONCLUSIONS: These results suggest that FSH, progesterone, and testosterone levels may be associated with AD and alcohol craving in AD males. Future research is needed to replicate these findings and investigate the underlying biological mechanisms.


Asunto(s)
Consumo de Bebidas Alcohólicas/sangre , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/sangre , Alcoholismo/psicología , Ansia/fisiología , Hormonas Esteroides Gonadales/sangre , Adulto , Alcoholismo/epidemiología , Biomarcadores/sangre , Emociones/fisiología , Estradiol/sangre , Femenino , Hormona Folículo Estimulante/sangre , Humanos , Hormona Luteinizante/sangre , Masculino , Persona de Mediana Edad , Progesterona/sangre , Autoinforme , Testosterona/sangre
20.
Restor Neurol Neurosci ; 37(2): 87-96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856132

RESUMEN

BACKGROUND/OBJECTIVES: Motor impairment induced by traumatic brain injury (TBI) may be mediated through changes in spinal molecular systems regulating neuronal plasticity. We assessed whether a focal controlled cortical impact (CCI) TBI in the rat alters expression of the Tgfb1, c-Fos, Bdnf, and Gap43 neuroplasticity genes in lumbar spinal cord.Approach/Methods:Adult male Sprague-Dawley rats (n = 8) were subjected to a right-side CCI over the anterior sensorimotor hindlimb representation area or sham-injury (n = 8). Absolute expression levels of Tgfb1, c-Fos, Bdnf, and Gapd43 genes were measured by droplet digital PCR in ipsi-and contralesional, dorsal and ventral quadrants of the L4 and L5 spinal cord. The neuronal activity marker c-Fos was analysed by immunohistochemistry in the dorsal L4 and L5 segments. The contra- vs. ipsilesional expression pattern was examined as the asymmetry index, AI. RESULTS: The Tgfb1 mRNA levels were significantly higher in the CCI vs. sham-injured rats, and in the contra- vs. ipsilesional dorsal domains in the CCI group. The number of c-Fos-positive cells was elevated in the L4 and L5 segments; and on the contralesional compared to the ipsilesional side in the CCI group. The c-Fos AI in the dorsal laminae was significantly increased by CCI. CONCLUSIONS: The results support the hypothesis that focal TBI induces plastic alterations in the lumbar spinal cord that may contribute to either motor recovery or maladaptive motor responses.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Médula Espinal/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Expresión Génica , Vértebras Lumbares , Masculino , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Médula Espinal/patología , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...