Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 12: 49-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33520574

RESUMEN

Supercapacitor devices are interesting owing to their broad range of applicability from wearable electronics to energy storage in electric vehicles. One of the key parameters that affect the efficiency of supercapacitor devices is selecting the ideal electrode material for a specific application. Regarding this, recently developed metal oxides, specifically nanostructured ZnO, and MXenes with their defect structures, size effects, as well as optical and electronic properties have been presented as electrode material in supercapacitor devices. The discussion of MXenes along with ZnO, although different in chemistry, also highlights the differences in dimensionality when it comes to defect-driven effects, especially in carrier transport. The volume under the influence of the defect centers is expected to be different in bulk and 2D structures, regardless of composition. Hence, analysis and discussion of both materials provide a fundamental understanding regarding the manner in which 2D structures are impacted by defects compared to bulk. Such an approach would therefore serve the scientific community with the material design tools needed to fabricate the next generation of supercapacitor devices.

2.
Colloids Surf B Biointerfaces ; 196: 111340, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956996

RESUMEN

With the development of nanotechnology, various drug delivery systems including inorganic nanoparticles, liposomes, polymers, etc. have been developed over the past decade. Some of these nanoparticles are also forthcoming candidates for the successful delivery of small interfering RNA (siRNA) for targeted gene silencing. Upon its discovery, siRNA was perceived as a highly promising agent in the treatment of various diseases. However, it could not exhibit the expected clinical outcomes owing to the unfavorable challenges during delivery. One such challenge was identified as the lack of an effective carrier. Among the carriers, calcium phosphate (CaP) nanoparticles have attracted remarkable attention due to the superior biochemical properties and hold great promise for siRNA. It is well known that synthesis conditions influence the types of crystalline phases of CaPs as well as morphology. In this study, to address the influence of these parameters on the success of siRNA delivery, three different arginine (Arg) modified CaP nanoparticles having different chemical and morphological characteristics were synthesized as being the carriers of two specific siRNAs against survivin and cyclin B1. The functioning of CaP surfaces with Arg results in positive zeta potential on the surfaces. Functionalized nanoparticles have a higher loading capacity compared to unmodified particles, as they have a cationic surface that can be easily attached to negatively charged siRNAs. The gene silencing ability and the consequent in vitro antitumor activity of these CaP-Arg-siRNA complexes were investigated using A549 non-small-cell lung cancer cells. We found that high survivin and cyclin B1 expression is associated with worse survival in patients with lung cancer based on the Kaplan-Meier database. Considering the promoting role of survivin and cyclin B1 in cancer development and progression, CaP-Arg-siRNA mediated suppression of these genes resulted in a significant decrease in cell growth and induction of apoptosis. Our data suggest that all three CaP-Arg nanoparticles synthesized in this work can be used as safe and efficient nanocarriers for siRNA delivery, offering the opportunity to develop new therapeutic strategies for the treatment of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Arginina , Fosfatos de Calcio , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ciclina B1/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , ARN Interferente Pequeño/genética , Survivin/genética
3.
Nanoscale ; 12(30): 16162-16172, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32700701

RESUMEN

Zinc oxide (ZnO) nanostructures were synthesized in the form of nanoparticles, nanoflowers and nanourchins. Structural, electronic and optical characterization of the samples was performed via standard techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence, Raman and ultraviolet-visible (UV-Vis) spectroscopy. Point defect structures which are specific to each morphology have been investigated in terms of their concentration and location via state-of-the-art electron paramagnetic resonance (EPR) spectroscopy. According to the core-shell model, all the samples revealed core defects; however, the defects on the surface are smeared out. Finally, all three morphologies have been tested as electrode materials in a real supercapacitor device and the performance of the device, in particular, the specific capacitance and the storage mechanism, has been mediated by the point defects. Morphology-dependent defective ZnO electrodes enable the monitoring of the working principle of the supercapacitor device ranging from electric double-layer capacitors (EDLC) to pseudo-supercapacitors.

4.
PLoS One ; 15(7): e0235929, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645104

RESUMEN

Combinations of three or more drugs are routinely used in various medical fields such as clinical oncology and infectious diseases to prevent resistance or to achieve synergistic therapeutic benefits. The very large number of possible high-order drug combinations presents a formidable challenge for discovering synergistic drug combinations. Here, we establish a guided screen to discover synergistic three-drug combinations. Using traditional checkerboard and recently developed diagonal methods, we experimentally measured all pairwise interactions among eight compounds in Erwinia amylovora, the causative agent of fire blight. Showing that synergy measurements of these two methods agree, we predicted synergy/antagonism scores for all possible three-drug combinations by averaging the synergy scores of pairwise interactions. We validated these predictions by experimentally measuring 35 three-drug interactions. Therefore, our guided screen for discovering three-drug synergies is (i) experimental screen of all pairwise interactions using diagonal method, (ii) averaging pairwise scores among components to predict three-drug interaction scores, (iii) experimental testing of top predictions. In our study, this strategy resulted in a five-fold reduction in screen size to find the most synergistic three-drug combinations.


Asunto(s)
Antibacterianos/química , Sinergismo Farmacológico , Aminoglicósidos/química , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Sulfato de Cobre/química , Sulfato de Cobre/farmacología , Interacciones Farmacológicas , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Gentamicinas/química , Pruebas de Sensibilidad Microbiana
5.
Nanoscale ; 12(24): 12790-12800, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32373860

RESUMEN

Two kinds of electrode materials were produced to fabricate asymmetric supercapacitor devices: (i) Highly defective, n-type wide bandgap semiconductor ZnO nanocrystalline electrodes below 50 nm were synthesized with the aid of the high energy ball milling technique. (ii) Flexible 3D-graphene foams were synthesized via the chemical vapor deposition technique. Extensive defect structure analysis was performed via enhanced characterization techniques mainly the spectroscopy ones: electron paramagnetic resonance (EPR), Raman, and photoluminescence (PL). Compared to bulk ZnO electrodes the nanoscale ZnO electrodes revealed a dramatic increase of defect concentration. The surface defect plays a crucial role in the electrochemical performance of supercapacitor devices. Strong decreases in charge transfer resistance were observed for the smallest crystallite size which is 15 nm. This work also shows that synthesis, controlling the defect structures, electronic and electrical characterization and the device production are extremely important to obtain high performance faradaic asymmetric supercapacitors.

6.
J Nanosci Nanotechnol ; 20(2): 680-691, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31383063

RESUMEN

BN has important roles in several physiological events, including bone growth and immune system. New infection-free cranioplasty and has an osteogenic activities material that are compatible with tissue are being developed. We aimed in our study to examine whether different combinations of Boron-nitride/Hydroxyapatite are embedded into the scaffold in the treatment of calvarial defects. 200 adult female Sprague-Dawley rats divided into 10 equal groups. Osteotomy was made by trepan drill in 8 mm diameter. The scaffolds were placed in the rats and were left to recovery for 2 months. During the experiment, CT scans were taken from the calvarial areas of the rats in the 2nd, 4th and 8th weeks. Significant healing was observed in defect diameters in 2.5% BN+10% HA, 2.5% BN and 5% BN+10% HA, respectively. After 8 weeks, it was seen that the amounts of OPN, BMP-2, RunX2 and ALP mRNA expression significantly decreased in 2.5% BN+10% HA, 2.5% BN, 5% BN+10% HA and 5% BN groups. It was shown that bone recovery was at the best grade in the groups, which contained 2.5% BN and 2.5% BN+10% HA when compared to the other groups. BN is a very promising agent that will be used in reconstructive surgery for the treatment of calvarial bone defects.


Asunto(s)
Durapatita , Nanopartículas , Animales , Regeneración Ósea , Boro , Femenino , Osteogénesis , Hueso Parietal , Ratas , Ratas Sprague-Dawley , Andamios del Tejido
7.
Nanoscale ; 11(43): 21008, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31651017

RESUMEN

Correction for 'Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: biosupercaps' by Mustafa Tuncer et al., Nanoscale, 2019, 11, 18375-18381.

8.
Nanoscale ; 11(39): 18375-18381, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31573596

RESUMEN

Octacalcium phosphate (OCP) is classified as a low-temperature phase of calcium phosphate (CaPs); it is a widely used ceramic material in biomedical applications. Interestingly, this study demonstrated the capacitive behavior of OCP as an electrode material in supercapacitors, alternatively named biosupercaps, for the first time in the literature. OCP powder was synthesized by solution precipitation at pH 5.5 at 60 °C in the presence of succinic acid. X-Ray diffraction (XRD) fully confirmed the OCP phase, with a crystallite size of around 40 nm, as calculated by the Scherrer equation. The FE-SEM micrographs of the OCP powder revealed plate-like morphology with a high surface area/thickness ratio. The surface widths of these layers ranged from about 2 to 100 microns, whereas the thickness of the layers was on the nanoscale (<100 nm). Raman spectroscopy was performed to confirm the microstructural formation of the OCP powder and electrodes according to the Raman spectra. Asymmetric and symmetric capacitors were prepared by various designs using OCP powder as a potential electrode material. The electrochemical performance of each biosupercap containing OCP was analyzed by a potentiostat in terms of current-voltage (CV) curves; each sample presented a typical pseudocapacitive behaviour. The electrochemical impedance spectra (EIS) of the OPC materials confirmed their significant capacitive performance, with up to 6 mA h g-1 specific capacity (SCp); this may be valuable for future medical electronics such as biocompatible energy storage and harvesting microdevices.


Asunto(s)
Fosfatos de Calcio/química , Cerámica/química , Capacidad Eléctrica , Nanopartículas/química , Electrodos
9.
Materials (Basel) ; 12(3)2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30678124

RESUMEN

The formation of ß-tricalcium phosphate (ß-TCP) nanoparticles via a wet precipitation technique was studied in a systematical way, taking reaction pH and sintering temperature parameters into account. A full transformation of Ca-deficient hydroxyapatite (CDHA) to ß-TCP at 750 °C in under 3 hours from Ca++ and PO43- precursor solutions prepared under a pH of 5.5 was observed. For pH values higher than 6.5, CDHA can only partially transform into ß-TCP and only at temperatures higher than 750 °C confirmed using X-Ray diffraction and Raman spectroscopy. The morphologies of the particles were also examined by Transmission electron microscopy. The lower temperatures and the shorter sintering time allow for a fine needle-like morphology, but with a high crystallinity, likely eliminating the possibility of excessive grain growth that is otherwise expected to occur under high-temperature treatment with long process times. We show that sintering of nanostructured, high crystallinity ß-TCP at relatively low temperatures is possible via adjustment of the precursor solution parameters. Such an outcome is important for the use of ß-TCP with a fine morphology imitating that of the skeletal tissues, enhancing the osteointegration of a base, load-bearing alloy to the host tissue. MTT analysis was used to test the effect of the obtained ß-TCP particles on the viability of MG-63 human osteoblast-like cells.

10.
J Vis Exp ; (136)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29985330

RESUMEN

A synergistic drug combination has a higher efficacy compared to the effects of individual drugs. Checkerboard assays, where drugs are combined in many doses, allow sensitive measurement of drug interactions. However, these assays are costly and do not scale well for measuring interaction among many drugs. Several recent studies have reported drug interaction measurements using a diagonal sampling of the traditional checkerboard assay. This alternative methodology greatly decreases the cost of drug interaction experiments and allows interaction measurement for combinations with many drugs. Here, we describe a protocol to measure the three pairwise interactions and one three-way interaction among three antibiotics in duplicate, in five days, using only three 96-well microplates and standard laboratory equipment. We present representative results showing that the three-antibiotic combination of Levofloxacin + Nalidixic Acid + Penicillin G is synergistic. Our protocol scales up to measure interactions among many drugs and in other biological contexts, allowing for efficient screens for multi-drug synergies against pathogens and tumors.


Asunto(s)
Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Humanos , Proyectos de Investigación
11.
Microsc Microanal ; 23(5): 891-899, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835297

RESUMEN

Calcium phosphate derivatives have been widely employed in medical and dental applications for hard tissue repair, as they are the main inorganic constitution of hard tissue; such as bones and teeth. Owing to their excellent osteoconductive and bioactive properties, hydroxyapatite- (HA) based ceramics are the best candidates of this group for medical, bioscience, and dental applications. However, when replacing a bone or tooth, HA is not able to sustain similar mechanical properties. In this study, to improve the mechanical properties, nanoscale hexagonal boron nitride with different compositional percentages was added to the nano HA to form composites. The effect of compositional changes and sintering parameters on microstructural and morphological properties of the ceramic composites was comparatively investigated. Detailed chemical characterization of the composite materials was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and energy-dispersive X-ray spectroscopy, whereas scanning electron microscopy and atomic force microscopy investigations were employed to monitor morphological and surface features. Additional transmission electron microscopy investigations were carried out to reveal the nanostructure and crystal structure of the composites.

12.
Colloids Surf B Biointerfaces ; 158: 175-181, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28689100

RESUMEN

Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer.


Asunto(s)
Aminoácidos/química , Fosfatos de Calcio/química , Nanopartículas/química , ARN Interferente Pequeño/química , Técnicas de Transferencia de Gen
13.
Mater Sci Eng C Mater Biol Appl ; 79: 343-353, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28629027

RESUMEN

In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials.


Asunto(s)
Compuestos de Boro/química , Materiales Biocompatibles Revestidos , Durapatita , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Titanio
14.
Mater Sci Eng C Mater Biol Appl ; 58: 1082-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478407

RESUMEN

Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers.


Asunto(s)
Apatitas/química , Compuestos de Boro/química , Boro/sangre , Fémur/cirugía , Nanocompuestos/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Boro/metabolismo , Compuestos de Boro/farmacocinética , Ratas , Ratas Sprague-Dawley
15.
Microsc Microanal ; 21(6): 1379-1386, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26650068

RESUMEN

Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

16.
J Appl Toxicol ; 34(4): 373-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24474238

RESUMEN

The present study was designed to investigate genotoxic and cytotoxic effects and oxidative damage of increasing concentrations of nano-hydroxyapatite (5, 10, 20, 50, 75, 100, 150, 300, 500 and 1000 ppm) in primary human blood cell cultures. Cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] assay and lactate dehydrogenase release, while total antioxidant capacity and total oxidative stress levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by sister chromatid exchange, micronuclei, chromosome aberration assays and 8-oxo-2-deoxyguanosine level as indicators of genotoxicity. The results of [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] and lactate dehydrogenase assays showed that the higher concentrations (150, 300, 500 and 1000 ppm) of hydroxyapatite nanoparticles (HAP NPs) decreased cell viability. HAP NPs led to increases of total oxidative stress (300, 500 and 1000 ppm) levels and decreased total antioxidant capacity (150, 300, 500 and 1000 ppm) levels in cultured human blood cells. On the basis of increasing concentrations, HAP NPs caused significant increases of sister chromatid exchange, micronuclei, chromosome aberration rates and 8-oxo-2-deoxyguanosine levels as compared to untreated culture. In conclusion, the obtained in vitro results showed that HAP NPs had dose-dependent effects on inducing oxidative damage, genotoxicity and cytotoxicity in human blood cells.


Asunto(s)
Daño del ADN , Durapatita/toxicidad , Linfocitos/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Nanopartículas , Intercambio de Cromátides Hermanas/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relación Dosis-Respuesta a Droga , Durapatita/química , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Pruebas de Mutagenicidad , Estrés Oxidativo/efectos de los fármacos , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...