Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 262: 122051, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024668

RESUMEN

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.


Asunto(s)
Arsénico , Arsenicales , Carbonato de Calcio , Compuestos de Hierro , Hierro , Minerales , Sulfuros , Minerales/química , Sulfuros/química , Compuestos de Hierro/química , Arsenicales/química , Carbonato de Calcio/química , Hierro/química , Solubilidad , Contaminantes Químicos del Agua/química , Oxidación-Reducción
2.
Water Res ; 256: 121582, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608621

RESUMEN

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Asunto(s)
Coloides , Agua Subterránea , Metales de Tierras Raras , Minerales , Minería , Contaminantes Químicos del Agua , Agua Subterránea/química , Coloides/química , China , Minerales/química , Adsorción
3.
Metallomics ; 15(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37849236

RESUMEN

The abandoned Allchar Mine in the Republic of North Macedonia is a globally unique deposit with the highest known grades of thallium (Tl) and arsenic (As) mineralization. We aimed to determine the distribution of As and Tl in whole dehydrated shoots of the three Viola taxa using synchrotron micro-X-ray fluorescence analysis. Additionally, soil and plant organ samples were collected from all three Viola taxa at the Allchar site and analysed using inductively coupled plasma-atomic emission spectrometry. Concentrations of Tl were extremely high in all three Viola taxa (up to 58 900 mg kg-1), but concentrations of As were highly variable with V. tricolor subsp. macedonica and V. allchariensis having low As (up to 20.2 and 26.3 mg kg-1, respectively) and V. arsenica having the highest concentrations (up to 381 mg kg-1). The extremely high Tl in all three species is endogenous and not a result of contamination. Arsenic in V. tricolor subsp. macedonica and V. allcharensis is strongly affected by contamination, but not in V. arsenica where it appears to be endogenous. The pattern of As enrichment in V. arsenica is very unusual and coincides with Ca-oxalate deposits and Br hotspots. The results of this study could form the basis for more detailed investigations under controlled conditions, including plant dosing experiments.


Asunto(s)
Arsénico , Contaminantes del Suelo , Talio/análisis , Arsénico/análisis , República de Macedonia del Norte , Sincrotrones , Plantas , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química
4.
Int J Phytoremediation ; 25(3): 381-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35788162

RESUMEN

The profiles of trace and major elements in three Odontarrhena species from the ultramafics of Western Iran (O. callichroa, O. penjwinensis and O. inflata) were evaluated to provide detailed information on their soil-plant relationships and potentials for agromining. The mean concentrations of Ni in leaf dry matter of these three species were 877, 3,270 and 2,720 mg kg-1, respectively. The mean concentrations of total soil Ni at sites Mazi Ban, Kamyaran and Ghala Ga were 1,470, 2,480, 1,030 mg kg-1, respectively. The Bioconcentration Factor (BCF) for Ni was >1 in O. penjwinensis and O. inflata, but not in O. callichroa. A positive relationship between shoot Ni and soil pH was found for all three species. They display Ni hyperaccumulation in the leaves, but with pronounced variation in the Ni concentrations attained. Odontarrhena penjwinensis emerged as the most promising potential candidate for future Ni agromining. The progress made in this study will enable further consideration of the three Odontarrhena species, especially O. penjwinensis, for any future commercial Ni agromining of the serpentinic ultramafic soils in Western Iran.


This pioneering study in a remote part of Western Iran is the first to evaluate nickel hyperaccumulating species of Odontarrhena (Alyssum) in relation to their soil-plant relationships and potential for agromining.


Asunto(s)
Brassicaceae , Contaminantes del Suelo , Níquel/análisis , Irán , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Suelo
5.
J Hazard Mater ; 443(Pt A): 130241, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308929

RESUMEN

Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , China
6.
Environ Sci Pollut Res Int ; 29(28): 43421-43434, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35094272

RESUMEN

The aim of this study was to determine the concentrations of potentially toxic elements in soil samples and plant tissues of Minuartia recurva and M. bulgarica, predominantly or exclusively calcifuge species. Biological concentration (BCs) and translocation factors (TFs) were used to evaluate their accumulation potential. Considerable differences were observed between M. recurva and M. bulgarica assessions in terms of accumulation strategies of potentially toxic elements (PTEs). In M. recurva, most of the elements analyzed (Mn, Cu, Zn, Cd, and Co) were transported to the shoot, whereas in M. bulgarica, these elements remained predominantly in the roots. The Cu concentrations in the shoot samples of M. recurva from an abandoned iron-copper mine at Mt. Kopaonik were clearly above the notional hyperaccumulation threshold, characterizing this species as a possible Cu hyperaccumulator. Additionally, strong accumulation potential for Cr, Ni, Zn, Pb, and Cd was observed in M. recurva assessions, but without significant accumulation due to the low concentrations of these elements in the soils. The strong accumulation capacity and the different strategies in tolerance to PTEs indicate a potential of the two species for an application in phytoremediation: M. recurva for phytoextraction and M. bulgarica for phytostabilization.


Asunto(s)
Caryophyllaceae , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio , Monitoreo del Ambiente , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
7.
Front Plant Sci ; 12: 778275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917111

RESUMEN

The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils.

8.
BMC Plant Biol ; 21(1): 437, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579652

RESUMEN

BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo). RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies. CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.


Asunto(s)
Transporte Biológico/fisiología , Malpighiaceae/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Isótopos de Zinc/metabolismo , Borneo , Malpighiaceae/química , Hojas de la Planta/química , Raíces de Plantas/química , Isótopos de Zinc/química
9.
Plant Physiol Biochem ; 164: 147-159, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991860

RESUMEN

The terrestrial fern Pityrogramma calomelanos, a cosmopolitan tropical species, is one of the strongest known arsenic (As) hyperaccumulator plants. This study aimed to determine whether P. calomelanos preferentially forages for arsenite (As3+) or arsenate (As5+) in As-contaminated soils, and whether a positive root response to As enhances accumulation in P. calomelanos. Therefore, an experiment using rhizoboxes divided in two halves were constructed with a control soil (C) and As3+ or As5+ dosed soil at either 50 and 100 µg g-1 As. Micro-X-ray Fluorescence elemental mapping (µXRF) was employed to analyze the distribution of As in roots and fronds, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) was used to determine As distribution in the reproductive tissues of P. calomelanos. The results showed that Pityrogramma roots do not specifically forage for As-contaminated soil; the area based on pixel counts was similar across all the treatments with no statistical differences. However, frond biomass was slightly higher in the treatments C ǀ As3+ and C ǀ As5+, and the highest accumulation of As in fronds was in the As5+ ǀ As3+ (100 µg g-1) treatment, with 3418 and 2370 µg g-1 in old and young fronds respectively. Arsenic cycling across the roots was observed by the µXRF mapping; in C ǀ As5+ (100) the As was higher and evenly distributed in both sections, whilst in C ǀ As3+ (50), the As was higher in the As3+ side. The µXRF mapping showed a broader As distribution in older fronds, where As was highest in the rachis and extended into the pinnule through the midrib. Pityrogramma calomelanos does not specifically root forage for As-enriched zones in the soil and grows healthily without signs of toxicity at lower (50 µg g-1) and higher (100 µg g-1) concentrations of As3+ and As5+ in the soil.


Asunto(s)
Arsénico , Helechos , Pteridaceae , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
10.
Plant J ; 107(4): 1040-1055, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34053139

RESUMEN

The hyperaccumulator Pycnandra acuminata is a New Caledonian rainforest tree known to have the highest concentration of nickel in any living organism, with 25 wt% nickel in its latex. All trees (with a diameter of >10 cm) and soil profiles in a 0.25-hectare permanent plot were sampled to assess the biogeochemical compartmentalisation of nickel in a dense stand of P. acuminata trees. Nickel stable isotope analysis permitted insights into the cycling of nickel in this ecosystem. The total tree biomass of the plot was calculated to be 281 tonnes ha-1 , which contained 0.44 kg of cobalt, 49.1 kg of manganese, 257 kg of nickel and 6.76 kg of zinc. Nickel stable isotope analysis identified the biotic origin of the nickel in the soil upper layers, with P. acuminata shoots enriched in lighter nickel isotopes. The δ60 Ni latex signature suggests that long-distance transport, radial xylem and phloem loading are at play in P. acuminata.


Asunto(s)
Bosques , Níquel/análisis , Níquel/farmacocinética , Sapotaceae/metabolismo , Suelo/química , Biomasa , Isótopos/análisis , Látex/química , Metales Pesados/análisis , Nueva Caledonia , Hojas de la Planta/química , Sapotaceae/efectos de los fármacos , Oligoelementos/análisis , Oligoelementos/farmacocinética , Árboles , Clima Tropical , Xilema/química
11.
Int J Phytoremediation ; 23(11): 1157-1168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33586537

RESUMEN

The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.


Asunto(s)
Níquel , Contaminantes del Suelo , Biodegradación Ambiental , América Central , México , Níquel/análisis , Suelo , Contaminantes del Suelo/análisis
12.
Plants (Basel) ; 9(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271845

RESUMEN

Albanian taxa and populations of the genus Odontarrhena are most promising candidates for research on metal tolerance and Ni-agromining, but their genetic structure remains unknown. We investigated phylogenetic relationships and genetic differentiation in relation to distribution and ploidy of the taxa, anthropic site disturbance, elevation, soil type, and trace metals at each population site. After performing DNA sequencing of selected accessions, we applied DNA-fingerprinting to analyze the genetic structure of 32 populations from ultramafic and non-ultramafic outcrops across Albania. Low sequence divergence resulted in poorly resolved phylograms, but supported affinity between the two diploid serpentine endemics O. moravensis and O. rigida. Analysis of molecular variance (AMOVA) revealed significant population differentiation, but no isolation by distance. Among-population variation was higher in polyploids than in diploids, in which genetic distances were lower. Genetic admixing at population and individual level occurred especially in the polyploids O. chalcidica, O. decipiens, and O. smolikana. Admixing increased with site disturbance. Outlier loci were higher in serpentine populations but decreased along altitude with lower drought and heat stress. Genetic variability gained by gene flow and hybridization at contact zones with "resident" species of primary ultramafic habitats promoted expansion of the tetraploid O. chalcidica across anthropogenic sites.

13.
J Hazard Mater ; 400: 123289, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947698

RESUMEN

China exemplifies the serious and widespread soil heavy metal pollution generated by mining activities. A total of 420 soil samples from 58 metal mines was collected across Eastern China. Total and available heavy metal concentrations, soil physico-chemical properties and geological indices were determined and collected. Risk assessments were applied, and a successive multivariate statistical analysis was carried out to provide insights into the heavy metal contamination characteristics and environmental drivers of heavy metal availability. The results suggested that although the degrees of pollution varied between different mine types, in general they had similar contamination characteristics in different regions. The major pollutants for total concentrations were found to be Cd and As in south and northeast China. The availability of Zn and Cd is relatively higher in south China. Soil physico-chemical properties had major effect on metal availability where soil pH was the most important factor. On a continental scale, soil pH and EC were influenced by the local climate patterns which could further impact on heavy metal availability. Enlightened by this study, future remediation strategies should be focused on steadily increasing soil pH, and building adaptable and sustainable ecological system to maintain low metal availabilities in mine site soils.

15.
Environ Sci Technol ; 52(21): 11980-11994, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30272967

RESUMEN

Hyperaccumulator plants are the material basis for phytoextraction research and for practical applications in decontaminating polluted soils and industrial wastes. China's high biodiversity and substantial mineral resources make it a global hotspot for hyperaccumulator plant species. Intensive screening efforts over the past 20 years by researchers working in China have led to the discovery of many different hyperaccumulators for a range of elements. In this review, we present the state of knowledge on all currently reported hyperaccumulator species from China, including Cardamine hupingshanensis (selenium, Se), Dicranopteris dichotoma (rare earth elements, REEs), Elsholtzia splendens (copper, Cu), Phytolacca americana (manganese, Mn), Pteris vittata (arsenic, As), Sedum alfredii, and Sedum plumbizincicola (cadmium/zinc, Cd/Zn). This review covers aspects of the ecophysiology and molecular biology of tolerance and hyperaccumulation for each element. The major scientific advances resulting from the study of hyperaccumulator plants in China are summarized and synthesized.


Asunto(s)
Pteris , Sedum , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio , China , Raíces de Plantas , Zinc
18.
Environ Pollut ; 231(Pt 1): 549-559, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28843203

RESUMEN

Cadmium uptake in rice is believed to be mediated by the Fe transport system. Phyto-available Cd can be changed by Fe fertilization of substrates. This work investigated whether and how Fe fertilization affects mitigation of Cd accumulation in paddy rice. A 90-d soil column experiment was conducted to study the change of Cd and Fe availability in soil after Fe fertilization (ionic and chelated Fe). A low-Cd accumulating cultivar (TY116) and a high-Cd accumulating cultivar (JY841) were grown in two Cd-polluted paddy soils amended with chelated Fe fertilizers. Additionally, both cultivars were grown in hydroponics to compare Fe-related gene expression in EDDHAFe-deficient and EDDHAFe-sufficient roots. The column experiment showed that EDTANa2Fe(II) and EDDHAFe(III) fertilization had a better mitigation effect on soil Cd availability compared to FeSO4·7H2O. Moreover, the field experiment demonstrated that these two chelated fertilizations could reduce Cd concentrations in brown rice by up to 80%. Iron concentrations in the brown rice were elevated by Fe chelates. Compared to EDDHAFe(III), EDTANa2Fe(II) fertilization had a stronger mitigation effect by generating more EDTANa2Cd(II) in the soil solution to decrease phyto-available Cd in the soil. While EDDHAFe(III) fertilization could increase soil pH and decrease soil Eh which contributed to decreasing phyto-available Cd in a contaminated soil. In the hydroponic experiment, Fe sufficiency significantly reduced Cd concentrations in above-ground organs. In some cases, the expression of OsIRT1, OsNRAMP1 and OsNRAMP5 was inhibited under Fe sufficiency relative to Fe deficiency conditions. These results suggest that mitigation of rice Cd by Fe chelate fertilization results from a decrease in available Cd in substrates and the inhibition of the expression of several Fe-related genes in the IRT and NRAMP families.


Asunto(s)
Cadmio/análisis , Restauración y Remediación Ambiental/métodos , Fertilizantes , Hierro/química , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Contaminación Ambiental , Hidroponía , Hierro/análisis , Oryza/metabolismo , Raíces de Plantas/metabolismo , Suelo
19.
Chemosphere ; 175: 275-285, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28232138

RESUMEN

Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa2Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 µΜ) of the iron chelates EDTANa2Fe(II) or EDDHAFe(III) and 1 µΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa2Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa2Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa2Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization decreased Cd influx and increased Cd efflux in rice roots.


Asunto(s)
Cadmio/metabolismo , Quelantes del Hierro/farmacología , Hierro/metabolismo , Oryza/efectos de los fármacos , Biofortificación , Ácido Edético/farmacología , Etilenodiaminas/farmacología , Compuestos Ferrosos/farmacología , Fertilizantes , Expresión Génica/efectos de los fármacos , Hidroponía , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA