Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
Cardiovasc Res ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056563

RESUMEN

AIMS: Vein grafts are used for many indications, including bypass graft surgery and arterio-venous fistula (AVF) formation. However, patency following vein grafting or AVF formation is suboptimal for various reasons, including thrombosis, neointimal hyperplasia and adverse remodeling. Recently, endothelial to mesenchymal transition (EndMT) was found to contribute to neointimal hyperplasia in mouse vein grafts. We aimed to evaluate the clinical potential of inhibiting EndMT, and developed the first dedicated preclinical model to study the efficacy of local EndMT inhibition immediately prior to AVF creation. METHODS AND RESULTS: We first undertook pilot studies to optimize the creation of a femoral AVF in pigs and verify that EndMT contributes to neointimal formation. We then developed a method to achieve local in vivo SMAD3 knockdown by dwelling a lentiviral construct containing SMAD3 shRNA in the femoral vein prior to AVF creation. Next, in Phase 1, 6 pigs were randomized to SMAD3 knockdown or control lentivirus to evaluate the effectiveness of SMAD3 knockdown and EndMT inhibition 8 days after AVF creation. In Phase 2, 16 pigs were randomized to SMAD3 knockdown or control lentivirus and were evaluated to assess longer-term effects on AVF diameter, patency and related measures at 30 days after AVF creation.In Phase 1, compared to controls, SMAD3 knockdown achieved a 75% reduction in the proportion of CD31+ endothelial cells co-expressing SMAD3 (p<0.001), and also a significant reduction in the extent of EndMT (p<0.05). In Phase 2, compared to controls, SMAD3 knockdown was associated with an increase in the minimum diameter of the venous limb of the AVF (1.56±1.66 versus 4.26±1.71mm, p<0.01) and a reduced degree of stenosis (p<0.01). Consistent with this, neointimal thickness was reduced in the SMAD3 knockdown group (0.88±0.51 versus 0.45±0.19mm, p<0.05). Furthermore, endothelial integrity (the proportion of luminal cells expressing endothelial markers) was improved in the SMAD3 knockdown group (p<0.05). CONCLUSIONS: EndMT inhibition in a preclinical AVF model by local SMAD3 knockdown using gene therapy led to reduced neointimal hyperplasia, increased endothelialization and a reduction in the degree of AVF stenosis. This provides important proof-of-concept to pursue this approach as a clinical strategy to improve the patency of AVFs and other vein grafts.

3.
Ecol Evol ; 14(7): e11674, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957697

RESUMEN

Globally, hundreds of mammal species face the threat of extinction in the coming decades, and in many cases, their ecology remains poorly understood. Fundamental ecological knowledge is crucial for effective conservation management of these species, but it is particularly lacking for small, cryptic mammals. The Julia Creek dunnart (Sminthopsis douglasi), a threatened, cryptic carnivorous marsupial that occurs in scattered populations in the central west of Queensland, Australia, was once so poorly studied that it was believed extinct. Sporadic research since its rediscovery in the early 1990s has revealed that S. douglasi is distributed across land at risk from many threats. Fundamental knowledge of S. douglasi population density is urgently required to inform conservation management at key sites, yet the species has historically proven hard to detect. Indeed, the status of the largest known population of S. douglasi, in Bladensburg National Park, is unknown. Here, we conducted a population study on S. douglasi at two sites within Bladensburg National Park via live mark-recapture surveys during 2022 and 2023. From likelihood-based spatially explicit capture-recapture (SECR) modelling we provide the first estimates of density and population size for S. douglasi. Live trapping resulted in captures of 49 individual S. douglasi (with 83 captures total, including recaptures). We estimated S. douglasi to occur at a density of 0.38 individuals ha-1 (0.25-0.58) at one site and 0.16 individuals ha-1 (0.09-0.27) at another site, with an estimated mean population size in suitable habitat at Bladensburg National Park of 1211 individuals (776-1646). Our S. douglasi density estimates were similar to that reported for other threatened small mammals in Australia. We also found evidence of extreme S. douglasi population fluctuations over time at Bladensburg National Park, which is of concern for its future conservation. Our study has provided the first estimate of density for S. douglasi, a threatened dasyurid species from the Mitchell Grass Downs of central western Queensland, Australia. Our research provides crucial population data to assist the management of this poorly studied species. We demonstrate a method that can be applied to species with low detection probability to ultimately help address the mammal extinction crisis faced by Australia and the rest of the world.

4.
PLoS One ; 19(6): e0292474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923956

RESUMEN

The effects of turbidity and sedimentation stress on early life stages of corals are poorly understood, particularly in Atlantic species. Dredging operations, beach nourishment, and other coastal construction activities can increase sedimentation and turbidity in nearby coral reef habitats and have the potential to negatively affect coral larval development and metamorphosis, reducing sexual reproduction success. In this study, we investigated the performance of larvae of the threatened Caribbean coral species Orbicella faveolata exposed to suspended sediments collected from a reef site in southeast Florida recently impacted by dredging (Port of Miami), and compared it to the performance of larvae exposed to sediments collected from the offshore, natal reef of the parent colonies. In a laboratory experiment, we tested whether low and high doses of each of these sediment types affected the survival, settlement, and respiration of coral larvae compared to a no-sediment control treatment. In addition, we analyzed the sediments used in the experiments with 16S rRNA gene amplicon sequencing to assess differences in the microbial communities present in the Port versus Reef sediments, and their potential impact on coral performance. Overall, only O. faveolata larvae exposed to the high-dose Port sediment treatment had significantly lower survival rates compared to the control treatment, suggesting an initial tolerance to elevated suspended sediments. However, significantly lower settlement rates were observed in both Port treatments (low- and high-dose) compared to the control treatment one week after exposure, suggesting strong latent effects. Sediments collected near the Port also contained different microbial communities than Reef sediments, and higher relative abundances of the bacteria Desulfobacterales, which has been associated with coral disease. We hypothesize that differences in microbial communities between the two sediments may be a contributing factor in explaining the observed differences in larval performance. Together, these results suggest that the settlement success and survival of O. faveolata larvae are more readily compromised by encountering port inlet sediments compared to reef sediments, with potentially important consequences for the recruitment success of this species in affected areas.


Asunto(s)
Antozoos , Arrecifes de Coral , Sedimentos Geológicos , Larva , Animales , Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Antozoos/fisiología , Larva/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Especies en Peligro de Extinción , ARN Ribosómico 16S/genética , Florida , Microbiota
5.
Circulation ; 150(6): 466-487, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38873770

RESUMEN

BACKGROUND: Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS: EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS: In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS: Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.


Asunto(s)
Apoptosis , Autofagia , Células Endoteliales , Hipertensión Pulmonar , Arteria Pulmonar , Animales , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Proliferación Celular , Masculino , Remodelación Vascular , Ratones Noqueados , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Hipoxia/patología , Células Cultivadas , Ratones Endogámicos C57BL
6.
Br J Pharmacol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773733

RESUMEN

Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology.

7.
Clin Imaging ; 111: 110150, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723403

RESUMEN

The perioptic space comprises the subarachnoid space [SAS] of the optic nerve communicating with the SAS of the central nervous system. Pressure variations in the SAS of the central nervous system can be transmitted to the optic papilla through the perioptic space. Variations in the diameter of the perioptic space serve as an important indicator for select intracranial pathologies in the pediatric population. Though the perioptic space can be evaluated using various imaging modalities, MRI is considered highly effective due to its superior soft tissue resolution. With advancement in MR imaging techniques, high-resolution images of the orbits can provide improved visualization of the perioptic space. It is imperative for the pediatric radiologist to routinely assess the perioptic space on brain and orbit MR imaging, as it can prompt exploration for additional features associated with select intracranial pathologies, thus improving diagnostic accuracy. This article reviews basic anatomy of the perioptic space, current understanding of the CSF dynamics between the perioptic space and central nervous system SAS, various imaging modalities utilized in the assessment of the perioptic space, MRI sequences and the optimal parameters of specific sequences, normal appearance of the perioptic space on MR imaging, and various common pediatric pathologies which cause alteration in the perioptic space.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Espacio Subaracnoideo/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen
8.
Angew Chem Int Ed Engl ; 63(25): e202404885, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622059

RESUMEN

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.


Asunto(s)
Senescencia Celular , Verde de Indocianina , Verde de Indocianina/química , Senescencia Celular/efectos de los fármacos , Humanos , Animales , Imagen Óptica , Ratones , Nanopartículas/química , Colorantes Fluorescentes/química , Técnicas Fotoacústicas/métodos
9.
Mol Ther Nucleic Acids ; 35(2): 102173, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617973

RESUMEN

Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.

10.
Sci Rep ; 14(1): 9573, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670993

RESUMEN

P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1ß release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.


Asunto(s)
Angiotensina II , Riñón , Ratas Endogámicas F344 , Receptores Purinérgicos P2X7 , Animales , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Ratas , Riñón/metabolismo , Riñón/patología , Femenino , Técnicas de Inactivación de Genes , Macrófagos/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología
11.
Neuroradiol J ; : 19714009241248746, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649153

RESUMEN

Arachnoid cysts are the most common incidentally discovered intracranial lesions on imaging and the most common cystic intracranial lesions. They may be developmental or secondary. A relative lack of recent literature and any comprehensive radiological review on arachnoid cysts has led to a general lack of awareness among radiologists of symptomatic or complicated arachnoid cysts. This is particularly concerning in pediatric patients. While arachnoid cysts are asymptomatic in most cases, they can cause clinical symptoms in a minority of cases, especially when they occur in unusual sites. These include intraventricular locations where they may cause hydrocephalus, the basal cisterns where they may compress cranial nerves, the cerebellopontine angle where they have to be differentiated from a number of cystic lesions, the cavum septum pellucidum or cavum velum interpositum, the choroid fissure where they can entrap the temporal horn and compress the hippocampus, the posterior fossa where they need to be differentiated from other posterior fossa cystic lesions, and within the spinal canal where there is a concern for cord or nerve root compression. Larger cysts are more prone to complications such as mass effect, hemorrhage, and rupture. Hemorrhage and rupture often present with acute symptoms. Ruptured cysts lose their characteristic imaging appearance and can mimic several ominous pathologies. It therefore becomes vital to accurately diagnose these cases as complications of pre-existing arachnoid cysts for appropriate management. A detailed review of all diagnostic imaging aspects of arachnoid cysts will help fill in the existing information void on this important entity.

12.
Sci Adv ; 10(13): eadk0164, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536913

RESUMEN

Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.


Asunto(s)
COVID-19 , Exosomas , Miocarditis , Humanos , ADN Mitocondrial/genética , Volumen Sistólico , Calcio , Función Ventricular Izquierda , Inflamación , SARS-CoV-2 , Citocinas
14.
J Appl Physiol (1985) ; 136(5): 1245-1259, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385183

RESUMEN

Anemia and renal failure are independent risk factors for perioperative stroke, prompting us to assess the combined impact of acute hemodilutional anemia and bilateral nephrectomy (2Nx) on microvascular brain Po2 (PBro2) in a rat model. Changes in PBro2 (phosphorescence quenching) and cardiac output (CO, echocardiography) were measured in different groups of anesthetized Sprague-Dawley rats (1.5% isoflurane, n = 5-8/group) randomized to Sham 2Nx or 2Nx and subsequently exposed to acute hemodilutional anemia (50% estimated blood volume exchange with 6% hydroxyethyl starch) or time-based controls (no hemodilution). Outcomes were assessed by ANOVA with significance assigned at P < 0.05. At baseline, 2Nx rats demonstrated reduced CO (49.9 ± 9.4 vs. 66.3 ± 19.3 mL/min; P = 0.014) and PBro2 (21.1 ± 2.9 vs. 32.4 ± 3.1 mmHg; P < 0.001) relative to Sham 2Nx rats. Following hemodilution, 2Nx rats demonstrated a further decrease in PBro2 (15.0 ± 6.3 mmHg, P = 0.022). Hemodiluted 2Nx rats did not demonstrate a comparable increase in CO after hemodilution compared with Sham 2Nx (74.8 ± 22.4 vs. 108.9 ± 18.8 mL/min, P = 0.003) that likely contributed to the observed reduction in PBro2. This impaired CO response was associated with reduced fractional shortening (33 ± 9 vs. 51 ± 5%) and increased left ventricular end-systolic volume (156 ± 51 vs. 72 ± 15 µL, P < 0.001) suggestive of systolic dysfunction. By contrast, hemodiluted Sham 2Nx animals demonstrated a robust increase in CO and preserved PBro2. These data support the hypothesis that the kidney plays a central role in maintaining cerebral perfusion and initiating the adaptive increase in CO required to optimize PBro2 during acute anemia.NEW & NOTEWORTHY This study has demonstrated that bilateral nephrectomy acutely impaired cardiac output (CO) and microvascular brain Po2 (PBro2), at baseline. Following acute hemodilution, nephrectomy prevented the adaptive increase in CO associated with acute hemodilution leading to a further reduction in PBro2, accentuating the degree of cerebral tissue hypoxia. These data support a role for the kidney in maintaining PBro2 and initiating the increase in CO that optimized brain perfusion during acute anemia.


Asunto(s)
Anemia , Gasto Cardíaco , Circulación Cerebrovascular , Hemodilución , Nefrectomía , Ratas Sprague-Dawley , Animales , Hemodilución/métodos , Nefrectomía/métodos , Ratas , Masculino , Circulación Cerebrovascular/fisiología , Anemia/fisiopatología , Gasto Cardíaco/fisiología , Modelos Animales de Enfermedad , Encéfalo/fisiopatología
15.
Cardiovasc Res ; 120(3): 223-236, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38385523

RESUMEN

Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.


Asunto(s)
Sistema Cardiovascular , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Transducción de Señal , Diferenciación Celular
16.
Crit Care ; 28(1): 63, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414082

RESUMEN

RATIONALE: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. OBJECTIVE: To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. METHODS: We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC-MS/MS and DI-MS/MS analytical platforms. RESULTS: Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. CONCLUSION: Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neumonía Bacteriana , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/complicaciones , Gripe Humana/complicaciones , Gripe Humana/terapia , Espectrometría de Masas en Tándem , Cromatografía Liquida , Lisina , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/terapia , Piruvatos
17.
J Maxillofac Oral Surg ; 23(1): 53-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312969

RESUMEN

Background: Free fibula flap has been the workhouse of reconstruction for segmental mandibular defects. The use of computer aided design helps in achieving the desired aesthetic and functional outcome. It has its advantages but it comes with an extensive financial burden. Purpose: We propose the use of redundant proximal fibula bone segment as a template and a cutting guide for flap osteotomies in mandibular reconstruction. Methods: We have used this surgical technique in a case of T4 oral cancer that required segmental mandibulectomy. Result: Average ischaemia time was 1 hour and 30 minutes. Based on histopathology report, both the patients required adjuvant radiotherapy. Oral competence was maintained in both the patients. Post-operatively, the contour and the orientation of the mandibular reconstruction were comparable both clinically and radiologically to the previously planned 3D cases. Conclusion: This surgical technique provides an accurate guide for end angle osteotomy. In addition, it does not require any extra surgical step and does not increase the ischemia time of the flap with no additional extra cost. Supplementary Information: The online version contains supplementary material available at 10.1007/s12663-021-01567-4.

19.
JACC Basic Transl Sci ; 9(1): 120-144, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362345

RESUMEN

Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA