Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(9): e0022824, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158294

RESUMEN

Until recently, microbiologists have relied on cultures to understand the microbial world. As a result, model organisms have been the focus of research into understanding Bacteria and Archaea at a molecular level. Diversity surveys and metagenomic sequencing have revealed that these model species are often present in low abundance in the environment; instead, there are microbial taxa that are cosmopolitan in nature. Due to the numerical dominance of these microorganisms and the size of their habitats, these lineages comprise mind-boggling population sizes upward of 1028 cells on the planet. Many of these dominant groups have cultured representatives and have been shown to be involved in mediating key processes in nature. Given their importance and the increasing need to understand changes due to climate change, we propose that members of Nitrosophaerota (Nitrosopumilus maritimus), SAR11 (Pelagibacter ubique), Hadesarchaeia, Bathyarchaeia, and others become models in the future. Abundance should not be the only measure of a good model system; there are other organisms that are well suited to advance our understanding of ecology and evolution. For example, the most well-studied symbiotic bacteria, like Buchnera, Aliivibrio, and Rhizobium, should be models for understanding host-associations. Also, there are organisms that hold new insights into major transitions in the evolution of life on the planet like the Asgard Archaea (Heimdallarchaeia). Innovations in a variety of in situ techniques have enabled us to circumvent culturing when studying everything from genetics to physiology. Our deepest understanding of microbiology and its impact on the planet will come from studying these microbes in nature. Laboratory-based studies must be grounded in nature, not the other way around.


Asunto(s)
Archaea , Bacterias , Bacterias/genética , Bacterias/clasificación , Archaea/genética , Archaea/clasificación
2.
Microbiome ; 12(1): 149, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123272

RESUMEN

BACKGROUND: Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS: Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS: This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.


Asunto(s)
Metagenoma , Filogenia , Genoma Bacteriano , Sedimentos Geológicos/microbiología , Genómica , Agua de Mar/microbiología , Organismos Acuáticos/genética , Metabolismo Secundario , Metagenómica
3.
mBio ; : e0034724, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207169

RESUMEN

DPANN archaea have characteristically small cells and unique genomes that were long overlooked in diversity surveys. Their reduced genomes often lack essential metabolic pathways, requiring symbiotic relationships with other archaeal and bacterial hosts for survival. Yet a long-standing question remains, what is the advantage of maintaining ultrasmall cells. A recent study by Zhang et al. examined genomes of DPANN archaea from marine oxygen deficient zones (ODZs) (I. H. Zhang, B. Borer, R. Zhao, S. Wilbert, et al., mBio 15:e02918-23, 2024, https://doi.org/10.1128/mbio.02918-23). Surprisingly, these genomes contain a broad array of metabolic pathways including genes predicted to be involved in nitrous oxide (N2O) reduction. However, N2O levels are likely too low in ODZs to make this metabolically feasible. Modeling co-localization of DPANN archaea (N2O consumers) with other larger cells (N2O producers) demonstrates that N2O uptake rates can be optimized by maximizing the producer-to-consumer size ratio and proximity of consumer cells to producers. This may explain why such a diversity of archaea maintain extremely small cell sizes.

4.
Nat Commun ; 15(1): 6384, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085194

RESUMEN

The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.


Asunto(s)
Archaea , Ciclo del Carbono , Metano , Microbiología del Suelo , Suelo , Humedales , Metano/metabolismo , Archaea/genética , Archaea/metabolismo , Suelo/química , Filogenia , Genoma Arqueal , Oxidación-Reducción
5.
Nat Commun ; 15(1): 6386, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085212

RESUMEN

Dozens of new antiviral systems have been recently characterized in bacteria. Some of these systems are present in eukaryotes and appear to have originated in prokaryotes, but little is known about these defense mechanisms in archaea. Here, we explore the diversity and distribution of defense systems in archaea and identify 2610 complete systems in Asgardarchaeota, a group of archaea related to eukaryotes. The Asgard defense systems comprise 89 unique systems, including argonaute, NLR, Mokosh, viperin, Lassamu, and CBASS. Asgard viperin and argonaute proteins have structural homology to eukaryotic proteins, and phylogenetic analyses suggest that eukaryotic viperin proteins were derived from Asgard viperins. We show that Asgard viperins display anti-phage activity when heterologously expressed in bacteria. Eukaryotic and bacterial argonaute proteins appear to have originated in Asgardarchaeota, and Asgard argonaute proteins have argonaute-PIWI domains, key components of eukaryotic RNA interference systems. Our results support that Asgardarchaeota played important roles in the origin of antiviral defense systems in eukaryotes.


Asunto(s)
Archaea , Proteínas Arqueales , Filogenia , Archaea/genética , Archaea/inmunología , Archaea/virología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Eucariontes/genética , Eucariontes/inmunología , Bacteriófagos/genética , Bacteriófagos/fisiología , Evolución Molecular
6.
Microb Biotechnol ; 17(6): e14508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888492

RESUMEN

Alkanes, single carbon methane to long-chain hydrocarbons (e.g. hexadecane and tetradecane), are important carbon sources to anaerobic microbial communities. In anoxic environments, archaea are known to utilize and produce methane via the methyl-coenzyme M reductase enzyme (MCR). Recent explorations of new environments, like deep sea sediments, that have coupled metagenomics and cultivation experiments revealed divergent MCRs, also referred to as alkyl-coenzyme M reductases (ACRs) in archaea, with similar mechanisms as the C1 utilizing canonical MCR mechanism. These ACR enzymes have been shown to activate other alkanes such as ethane, propane and butane for subsequent degradation. The reversibility of canonical MCRs suggests that these non-methane-activating homologues (ACRs) might have similar reversibility, perhaps mediated by undiscovered lineages that produce alkanes under certain conditions. The discovery of these alternative alkane utilization pathways holds significant promise for a breadth of potential biotechnological applications in bioremediation, energy production and climate change mitigation.


Asunto(s)
Archaea , Hidrocarburos , Metano , Anaerobiosis , Archaea/metabolismo , Archaea/genética , Archaea/clasificación , Metano/metabolismo , Hidrocarburos/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Alcanos/metabolismo , Redes y Vías Metabólicas/genética , Biodegradación Ambiental
7.
Syst Appl Microbiol ; 47(4): 126525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38909391

RESUMEN

Asgardarchaeota, commonly referred to as Asgard archaea, is a candidatus phylum-rank archaeal clade that includes the closest archaeal relatives of eukaryotes. Despite their prevalence in the scientific literature, the name Asgardarchaeota lacks nomenclatural validation. Here, we describe a novel high-quality metagenome-assembled genome (MAG), AB3033_2TS, proposed to serve as the nomenclatural type for the species Asgardarchaeum abyssiTS according to the rules of the SeqCode. Based on protein content and compositional features, we infer that A. abyssi AB3033_2TS is an acetogenic chemoheterotroph, possibly a facultative lithoautotroph, and is adapted to a thermophilic lifestyle. Utilizing genomes from Asgard archaea, TACK, and Euryarchaea, we perform phylogenomic reconstructions using the GTDB archaeal marker genes, the current reference set for taxonomic classification. Calibrating relative evolutionary divergence (RED) values for Asgardarchaeota using established Thermoproteota lineages in the GTDB r207 reference tree, we establish a robust classification and propose Asgardarchaeum as the type genus for the family Asgardarchaeaceae (fam. nov)., the order Asgardarchaeales (ord. nov.), the class Asgardarchaeia (class. nov.), and the phylum Asgardarchaeota (phyl. nov.). This effort aims to preserve taxonomic congruence in the scientific literature.


Asunto(s)
Archaea , Genoma Arqueal , Filogenia , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN de Archaea/genética , ADN de Archaea/química , Metagenoma
8.
AJPM Focus ; 3(3): 100202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596163

RESUMEN

Introduction: The novel COVID-19 disease detected in 2019 widely affected individuals' social movements, likely disrupting the ability to participate in leisure-related physical activity. Because of this, participation in sedentary behavior is thought to have increased. The purpose of this study was to determine how the COVID-19 pandemic affected U.S. young adult physical activity and sedentary behavior. Methods: A total of 333 U.S. young adults (aged between 18 and 30 years) completed an online, comprehensive questionnaire during the early parts of COVID-19. Wilcoxon signed-rank tests were used to determine the change in time spent in physical activity and sedentary behavior during COVID-19 compared with that before COVID-19. Results: There was a significant decrease in physical activity minutes (p<0.0001) and a significant increase in sedentary behavior (p<0.005) during COVID-19 compared with that before COVID-19. Significant differences were found by stratifying the data by sex and relationship status. Although both males and females reduced their physical activity, only males significantly increased their time in sedentary behavior during COVID-19 compared with that before COVID-19 (p<0.05). Furthermore, married young adults significantly reduced their physical activity during COVID-19 (p<0.001), whereas single individuals did not. Single young adults saw significant increases in sedentary behavior during COVID-19 (p<0.005), whereas married individuals did not exhibit any change in sedentary behavior. Conclusions: Stay-at-home orders enforced in the U.S. during the summer of 2020 led to increases in sedentary behavior and decreases in physical activity, particularly among males and single young adults. Future studies should determine whether these behavior changes persist.

9.
Int Wound J ; 21(4): e14817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38567778

RESUMEN

This Phase 1b study was designed to evaluate the safety and efficacy of pravibismane, a novel broad-spectrum topical anti-infective, in managing moderate or severe chronic diabetic foot ulcer (DFU) infections. This randomized, double-blind, placebo-controlled, multicenter study consisted of 39 individuals undergoing pravibismane treatment and 13 individuals in the placebo group. Assessment of safety parameters included clinical observations of tolerability and pharmacokinetics from whole blood samples. Pravibismane was well-tolerated and exhibited minimal systemic absorption, as confirmed by blood concentrations that were below the lower limit of quantitation (0.5 ng/mL) or in the low nanomolar range, which is orders of magnitude below the threshold of pharmacological relevance for pravibismane. Pravibismane treated subjects showed approximately 3-fold decrease in ulcer size compared to the placebo group (85% vs. 30%, p = 0.27). Furthermore, the incidence of ulcer-related lower limb amputations was approximately 6-fold lower (2.6%) in the pooled pravibismane group versus 15.4% in the placebo group (p = 0.15). There were no treatment emergent or serious adverse events related to study drug. The initial findings indicate that topical pravibismane was safe and potentially effective treatment for improving recovery from infected chronic ulcers by reducing ulcer size and facilitating wound healing in infected DFUs (ClinicalTrials.gov Identifier NCT02723539).


Asunto(s)
Antiinfecciosos , Diabetes Mellitus , Pie Diabético , Humanos , Antibacterianos/efectos adversos , Antiinfecciosos/efectos adversos , Pie Diabético/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento , Úlcera/tratamiento farmacológico
10.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370794

RESUMEN

Ecology and evolution are distinct theories, but the short lifespans and large population sizes of microbes allow evolution to unfold along contemporary ecological time scales. To document this in a natural system, we collected a two-decade, 471-metagenome time series from a single site in a freshwater lake, which we refer to as the TYMEFLIES dataset. This massive sampling and sequencing effort resulted in the reconstruction of 30,389 metagenomic-assembled genomes (MAGs) over 50% complete, which dereplicated into 2,855 distinct genomes (>96% nucleotide sequence identity). We found both ecological and evolutionary processes occurred at seasonal time scales. There were recurring annual patterns at the species level in abundances, nucleotide diversities (π), and single nucleotide variant (SNV) profiles for the majority of all taxa. During annual blooms, we observed both higher and lower nucleotide diversity, indicating that both ecological differentiation and competition drove evolutionary dynamics. Overlayed upon seasonal patterns, we observed long-term change in 20% of the species' SNV profiles including gradual changes, step changes, and disturbances followed by resilience. Most abrupt changes occurred in a single species, suggesting evolutionary drivers are highly specific. Nevertheless, seven members of the abundant Nanopelagicaceae family experienced abrupt change in 2012, an unusually hot and dry year. This shift coincided with increased numbers of genes under selection involved in amino acid and nucleic acid metabolism, suggesting fundamental organic nitrogen compounds drive strain differentiation in the most globally abundant freshwater family. Overall, we observed seasonal and decadal trends in both interspecific ecological and intraspecific evolutionary processes. The convergence of microbial ecology and evolution on the same time scales demonstrates that understanding microbiomes requires a new unified approach that views ecology and evolution as a single continuum.

11.
Microbiome ; 12(1): 15, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273328

RESUMEN

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Asunto(s)
Ecosistema , Agua Subterránea , Bacterias/genética , Bacterias/metabolismo , Sulfuros/metabolismo , Oxidación-Reducción , Agua Subterránea/microbiología , Azufre/metabolismo , Biopelículas , Hidrógeno/metabolismo , Filogenia
12.
Obes Surg ; 34(3): 769-777, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280161

RESUMEN

INTRODUCTION: Identification of liver disease during bariatric operations is an important task given the patients risk for occult fatty liver disease. Surgeon's accuracy of assessing for liver disease during an operation is poorly understood. The objective was to measure surgeons' performance on intra-operative visual assessment of the liver in a simulated environment. METHODS: Liver images from 100 patients who underwent laparoscopic bariatric surgery and pre-operative ultrasound elastography between July 2020 and July 2021 were retrospectively evaluated. The perception of 15 surgeons regarding the degree of hepatic steatosis and fibrosis was collected in a simulated clinical environment by survey and compared to results determined by ultrasonographic exam. RESULTS: The surgeons' ability to correctly identify the class of steatosis and fibrosis was poor (accuracy 61% and 59%, respectively) with a very weak correlation between the surgeon's predicted class and its true class (r = 0.17 and r = 0.12, respectively). When liver disease was present, surgeons completely missed its presence in 26% and 51% of steatosis and fibrosis, respectively. Digital image processing demonstrated that surgeons subjectively classified steatosis based on the "yellowness" of the liver and fibrosis based on texture of the liver, despite neither correlating with the true degree of liver disease. CONCLUSION: Laparoscopic visual assessment of the liver surface for identification of non-cirrhotic liver disease was found to be an inaccurate method during laparoscopic bariatric surgery. While validation studies are needed, the results suggest the clinical need for alternative approaches.


Asunto(s)
Cirugía Bariátrica , Laparoscopía , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Cirujanos , Humanos , Estudios Retrospectivos , Obesidad Mórbida/cirugía , Hígado/diagnóstico por imagen , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/cirugía , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/cirugía , Cirrosis Hepática/patología
14.
15.
mSystems ; 8(5): e0061923, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702502

RESUMEN

IMPORTANCE: Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.


Asunto(s)
Bacterias , Hidrocarburos , Biodegradación Ambiental , Hidrocarburos/análisis , Bacterias/genética , Océano Atlántico , Alcanos/metabolismo
16.
ISME J ; 17(11): 1828-1838, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37596411

RESUMEN

Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.


Asunto(s)
Euryarchaeota , Sedimentos Geológicos , Filogenia , Euryarchaeota/genética , Metano/metabolismo , ARN Ribosómico 16S
18.
J Child Lang ; : 1-37, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493012

RESUMEN

Many Aboriginal Australian communities are undergoing language shift from traditional Indigenous languages to contact varieties such as Kriol, an English-lexified Creole. Kriol is reportedly characterised by lexical items with highly variable phonological specifications, and variable implementation of voicing and manner contrasts in obstruents (Sandefur, 1986). A language, such as Kriol, characterised by this unusual degree of variability presents Kriol-acquiring children with a potentially difficult language-learning task, and one which challenges the prevalent theories of acquisition. To examine stop consonant acquisition in this unusual language environment, we present a study of Kriol stop and affricate production, followed by a mispronunciation detection study, with Kriol-speaking children (ages 4-7) from a Northern Territory community where Kriol is the lingua franca. In contrast to previous claims, the results suggest that Kriol-speaking children acquire a stable phonology and lexemes with canonical phonemic specifications, and that English experience would not appear to induce this stability.

19.
Nature ; 618(7967): 992-999, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316666

RESUMEN

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Asunto(s)
Archaea , Eucariontes , Filogenia , Archaea/clasificación , Archaea/citología , Archaea/genética , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Células Eucariotas/clasificación , Células Eucariotas/citología , Células Procariotas/clasificación , Células Procariotas/citología , Conjuntos de Datos como Asunto , Duplicación de Gen , Evolución Molecular
20.
ISME Commun ; 3(1): 64, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355707

RESUMEN

Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA