Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38349624

RESUMEN

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT: an endeavor with many open questions and technical challenges. In this work, we present GradDFT a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. GradDFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, GradDFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

2.
Phys Rev Lett ; 127(24): 247601, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34951802

RESUMEN

Engraving trenches on the surfaces of ultrathin ferroelectric (FE) films and superlattices promises control over the orientation and direction of FE domain walls (DWs). Through exploiting the phenomenon of DW-surface trench (ST) parallel alignment, systems where DWs are known for becoming electrical conductors could now become useful nanocircuits using only standard lithographical techniques. Despite this clear application, the microscopic mechanism responsible for the alignment phenomenon has remained elusive. Using ultrathin PbTiO_{3} films as a model system, we explore this mechanism with large scale density functional theory simulations on as many as 5,136 atoms. Although we expect multiple contributing factors, we show that parallel DW-ST alignment can be well explained by this configuration giving rise to an arrangement of electric dipole moments which best restore polar continuity to the film. These moments preserve the polar texture of the pristine film, thus minimizing ST-induced depolarizing fields. Given the generality of this mechanism, we suggest that STs could be used to engineer other exotic polar textures in a variety of FE nanostructures as supported by the appearance of ST-induced polar cycloidal modulations in this Letter. Our simulations also support experimental observations of ST-induced negative strains which have been suggested to play a role in the alignment mechanism.

3.
J Chem Phys ; 152(16): 164112, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32357801

RESUMEN

We survey the underlying theory behind the large-scale and linear scaling density functional theory code, conquest, which shows excellent parallel scaling and can be applied to thousands of atoms with diagonalization and millions of atoms with linear scaling. We give details of the representation of the density matrix and the approach to finding the electronic ground state and discuss the implementation of molecular dynamics with linear scaling. We give an overview of the performance of the code, focusing in particular on the parallel scaling, and provide examples of recent developments and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA