Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 17(1): 201-210, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332965

RESUMEN

This paper explores the utility of the quantum phase estimation (QPE) algorithm in calculating high-energy excited states characterized by the promotion of electrons occupying core-level shells. These states have been intensively studied over the last few decades, especially in supporting the experimental effort at light sources. Results obtained with QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is discussed. We also demonstrate the utility of the QPE algorithm in targeting excitations from specific centers in a molecule. Lastly, we discuss how the lowest-order Trotter formula can be applied to reducing the complexity of the ansatz without affecting the error.

2.
J Comput Phys ; 4182020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32952214

RESUMEN

The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34661203

RESUMEN

In this work, we developed an efficient approach to compute ensemble averages in systems with pairwise-additive energetic interactions between the entities. Methods involving full enumeration of the configuration space result in exponential complexity. Sampling methods such as Markov Chain Monte Carlo (MCMC) algorithms have been proposed to tackle the exponential complexity of these problems; however, in certain scenarios where significant energetic coupling exists between the entities, the efficiency of the such algorithms can be diminished. We used a strategy to improve the efficiency of MCMC by taking advantage of the cluster structure in the interaction energy matrix to bias the sampling. We pursued two different schemes for the biased MCMC runs and show that they are valid MCMC schemes. We used both synthesized and real-world systems to show the improved performance of our biased MCMC methods when compared to the regular MCMC method. In particular, we applied these algorithms to the problem of estimating protonation ensemble averages and titration curves of residues in a protein.

4.
Protein Sci ; 29(1): 237-246, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710727

RESUMEN

Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson-Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two-dimensional external molecular visualization software. This process has inherent limitations: visualization of three-dimensional objects using a two-dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol-APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Animales , Imagenología Tridimensional , Conformación Proteica , Electricidad Estática , Interfaz Usuario-Computador , Realidad Virtual , Navegador Web
5.
Comput Methods Appl Mech Eng ; 350: 199-227, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32038051

RESUMEN

The challenge of quantifying uncertainty propagation in real-world systems is rooted in the high-dimensionality of the stochastic input and the frequent lack of explicit knowledge of its probability distribution. Traditional approaches show limitations for such problems, especially when the size of the training data is limited. To address these difficulties, we have developed a general framework of constructing surrogate models on spaces of stochastic input with arbitrary probability measure irrespective of the mutual dependencies between individual components of the random inputs and the analytical form. The present Data-driven Sparsity-enhancing Rotation for Arbitrary Randomness (DSRAR) framework includes a data-driven construction of multivariate polynomial basis for arbitrary mutually dependent probability measures and a sparsity enhancement rotation procedure. This sparsity-enhancing rotation method was initially proposed in our previous work [1] for Gaussian density distributions, which may not be feasible for non-Gaussian distributions due to the loss of orthogonality after the rotation. To remedy such difficulties, we developed a new data-driven approach to construct orthonormal polynomials for arbitrary mutually dependent randomness, ensuring the constructed basis maintains the orthogonality/near-orthogonality with respect to the density of the rotated random vector, where directly applying the regular polynomial chaos including arbitrary polynomial chaos (aPC) [2] shows limitations due to the assumption of the mutual independence between the components of the random inputs. The developed DSRAR framework leads to accurate recovery, with only limited training data, of a sparse representation of the target functions. The effectiveness of our method is demonstrated in challenging problems such as partial differential equations and realistic molecular systems within high-dimensional (O(10)) conformational spaces where the underlying density is implicitly represented by a large collection of sample data, as well as systems with explicitly given non-Gaussian probabilistic measures.

6.
J Chem Theory Comput ; 14(2): 759-767, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29293342

RESUMEN

Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is underdetermined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parametrization problems, including those beyond continuum solvation calculations. The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters.


Asunto(s)
Benzamidas/química , Simulación de Dinámica Molecular , Termodinámica , Método de Montecarlo , Solubilidad , Electricidad Estática
7.
Protein Sci ; 27(1): 112-128, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28836357

RESUMEN

The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.


Asunto(s)
Modelos Moleculares , Programas Informáticos , Electricidad Estática
8.
J Phys Chem B ; 121(15): 3458-3472, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27966363

RESUMEN

This paper applies the Bayesian Model Averaging statistical ensemble technique to estimate small molecule solvation free energies. There is a wide range of methods available for predicting solvation free energies, ranging from empirical statistical models to ab initio quantum mechanical approaches. Each of these methods is based on a set of conceptual assumptions that can affect predictive accuracy and transferability. Using an iterative statistical process, we have selected and combined solvation energy estimates using an ensemble of 17 diverse methods from the fourth Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) blind prediction study to form a single, aggregated solvation energy estimate. Methods that possess minimal or redundant information are pruned from the ensemble and the evaluation process repeats until aggregate predictive performance can no longer be improved. We show that this process results in a final aggregate estimate that outperforms all individual methods by reducing estimate errors by as much as 91% to 1.2 kcal mol-1 accuracy. This work provides a new approach for accurate solvation free energy prediction and lays the foundation for future work on aggregate models that can balance computational cost with prediction accuracy.


Asunto(s)
Teorema de Bayes , Proteínas/química , Solventes/química , Termodinámica , Ligandos , Teoría Cuántica , Solubilidad
9.
J Comput Chem ; 38(15): 1275-1282, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-27804145

RESUMEN

We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos , Algoritmos , Cinética , Electricidad Estática
10.
Proc Natl Acad Sci U S A ; 113(50): 14183-14188, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911787

RESUMEN

We present a data-driven approach to determine the memory kernel and random noise in generalized Langevin equations. To facilitate practical implementations, we parameterize the kernel function in the Laplace domain by a rational function, with coefficients directly linked to the equilibrium statistics of the coarse-grain variables. We show that such an approximation can be constructed to arbitrarily high order and the resulting generalized Langevin dynamics can be embedded in an extended stochastic model without explicit memory. We demonstrate how to introduce the stochastic noise so that the second fluctuation-dissipation theorem is exactly satisfied. Results from several numerical tests are presented to demonstrate the effectiveness of the proposed method.

11.
Phys Rev E ; 94(2-1): 023304, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627409

RESUMEN

Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.

12.
J Chem Phys ; 144(15): 155101, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27389241

RESUMEN

We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregationfree energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregationfree energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNAcondensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NAcondensation lends support to proposed NAcondensation picture based on the multivalent "ion binding shells."


Asunto(s)
Cobalto/química , ADN/química , ARN/química , Modelos Químicos , Simulación de Dinámica Molecular
13.
J Phys Chem B ; 120(33): 8354-60, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27089174

RESUMEN

There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.


Asunto(s)
Algoritmos , Modelos Moleculares , Proteínas/metabolismo , Simulación por Computador , Concentración de Iones de Hidrógeno , Método de Montecarlo , Proteínas/química
14.
Biophys J ; 110(2): 315-326, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789755

RESUMEN

The ionic atmospheres around nucleic acids play important roles in biological function. Large-scale explicit solvent simulations coupled to experimental assays such as anomalous small-angle x-ray scattering can provide important insights into the structure and energetics of such atmospheres but are time- and resource intensive. In this article, we use classical density functional theory to explore the balance among ion-DNA, ion-water, and ion-ion interactions in ionic atmospheres of RbCl, SrCl2, and CoHexCl3 (cobalt hexamine chloride) around a B-form DNA molecule. The accuracy of the classical density functional theory calculations was assessed by comparison between simulated and experimental anomalous small-angle x-ray scattering curves, demonstrating that an accurate model should take into account ion-ion correlation and ion hydration forces, DNA topology, and the discrete distribution of charges on the DNA backbone. As expected, these calculations revealed significant differences among monovalent, divalent, and trivalent cation distributions around DNA. Approximately half of the DNA-bound Rb(+) ions penetrate into the minor groove of the DNA and half adsorb on the DNA backbone. The fraction of cations in the minor groove decreases for the larger Sr(2+) ions and becomes zero for CoHex(3+) ions, which all adsorb on the DNA backbone. The distribution of CoHex(3+) ions is mainly determined by Coulomb and steric interactions, while ion-correlation forces play a central role in the monovalent Rb(+) distribution and a combination of ion-correlation and hydration forces affect the Sr(2+) distribution around DNA. This does not imply that correlations in CoHex solutions are weaker or stronger than for other ions. Steric inaccessibility of the grooves to large CoHex ions leads to their binding at the DNA surface. In this binding mode, first-order electrostatic interactions (Coulomb) dominate the overall binding energy as evidenced by low sensitivity of ionic distribution to the presence or absence of second-order electrostatic correlation interactions.


Asunto(s)
Cobalto/química , ADN Forma B/química , Rubidio/química , Estroncio/química , Electricidad Estática
15.
BMC Biophys ; 8: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25995835

RESUMEN

BACKGROUND: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. METHODS: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with "imperfect" reaction rates. RESULTS: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. CONCLUSIONS: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

16.
Comput Sci Discov ; 7(1): 015003, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25254068

RESUMEN

Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

17.
J Chem Theory Comput ; 10(5): 2137-2150, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24910542

RESUMEN

Cholesterol trafficking, which is an essential function in mammalian cells, is intimately connected to molecular-scale interactions through cholesterol modulation of membrane structure and dynamics and interaction with membrane receptors. Since these effects of cholesterol occur on micro- to millisecond timescales, it is essential to develop accurate coarse-grained simulation models that can reach these timescales. Cholesterol has been shown experimentally to thicken the membrane and increase phospholipid tail order between 0-40% cholesterol, above which these effects plateau or slightly decrease. Here, we showed that the published MARTINI coarse-grained force-field for phospholipid (POPC) and cholesterol fails to capture these effects. Using reference atomistic simulations, we systematically modified POPC and cholesterol bonded parameters in MARTINI to improve its performance. We showed that the corrections to pseudo-bond angles between glycerol and the lipid tails and around the oleoyl double bond particle (the "angle-corrected model") slightly improves the agreement of MARTINI with experimentally measured thermal, elastic, and dynamic properties of POPC membranes. The angle-corrected model improves prediction of the thickening and ordering effects up to 40% cholesterol but overestimates these effects at higher cholesterol concentration. In accordance with prior work that showed the cholesterol rough face methyl groups are important for limiting cholesterol self-association, we revised the coarse-grained representation of these methyl groups to better match cholesterol-cholesterol radial distribution functions from atomistic simulations. In addition, by using a finer-grained representation of the branched cholesterol tail than MARTINI, we improved predictions of lipid tail order and bilayer thickness across a wide range of concentrations. Finally, transferability testing shows that a model incorporating our revised parameters into DOPC outperforms other CG models in a DOPC/cholesterol simulation series, which further argues for its efficacy and generalizability. These results argue for the importance of systematic optimization for coarse-graining biologically important molecules like cholesterol with complicated molecular structure.

18.
Biochemistry ; 53(18): 3042-51, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24758724

RESUMEN

Side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), are key regulators of cholesterol homeostasis. New evidence suggests that the alteration of membrane structure by 25-HC contributes to its regulatory effects. We have examined the role of oxysterol membrane effects on cholesterol accessibility within the membrane using perfringolysin O (PFO), a cholesterol-dependent cytolysin that selectively binds accessible cholesterol, as a sensor of membrane cholesterol accessibility. We show that 25-HC increases cholesterol accessibility in a manner dependent on the membrane lipid composition. Structural analysis of molecular dynamics simulations reveals that increased cholesterol accessibility is associated with membrane thinning, and that the effects of 25-HC on cholesterol accessibility are driven by these changes in membrane thickness. Further, we find that the 25-HC antagonist LY295427 (agisterol) abrogates the membrane effects of 25-HC in a nonenantioselective manner, suggesting that agisterol antagonizes the cholesterol-homeostatic effects of 25-HC indirectly through its membrane interactions. These studies demonstrate that oxysterols regulate cholesterol accessibility, and thus the availability of cholesterol to be sensed and transported throughout the cell, by modulating the membrane environment. This work provides new insights into how alterations in membrane structure can be used to relay cholesterol regulatory signals.


Asunto(s)
Membrana Celular/efectos de los fármacos , Colesterol/química , Toxinas Bacterianas/farmacología , Colestanoles/farmacología , Colesterol/metabolismo , Proteínas Hemolisinas/farmacología , Homeostasis/efectos de los fármacos , Hidroxicolesteroles/farmacología , Liposomas/metabolismo , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Relación Estructura-Actividad
19.
Proteins ; 82(3): 354-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23946048

RESUMEN

This article investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pKa predictions. Structure-based pKa calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for pKa prediction, ranging from empirical statistical models to ab initio quantum mechanical approaches. However, each of these methods are based on a set of conceptual assumptions that can effect a model's accuracy and generalizability for pKa prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the García-Moreno lab. Our cross-validation study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods with improvements ranging from 45 to 73% over other method classes. This study also compares BMA's predictive performance to other ensemble-based techniques and demonstrates that BMA can outperform these approaches with improvements ranging from 27 to 60%. This work illustrates a new possible mechanism for improving the accuracy of pKa prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.


Asunto(s)
Teorema de Bayes , Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Modelos Estadísticos
20.
Nanomedicine ; 10(3): 651-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24211337

RESUMEN

Nanoparticles offer new options for medical diagnosis and therapeutics with their capacity to specifically target cells and tissues with imaging agents and/or drug payloads. The unique physical aspects of nanoparticles present new challenges for this promising technology. Studies indicate that nanoparticles often elicit moderate to severe complement activation. Using human in vitro assays that corroborated the mouse in vivo results we previously presented mechanistic studies that define the pathway and key components involved in modulating complement interactions with several gadolinium-functionalized perfluorocarbon nanoparticles (PFOB). Here we employ a modified in vitro hemolysis-based assay developed in conjunction with the mouse in vivo model to broaden our analysis to include PFOBs of varying size, charge and surface chemistry and examine the variations in nanoparticle-mediated complement activity between individuals. This approach may provide the tools for an in-depth structure-activity relationship study that will guide the eventual development of biocompatible nanoparticles. FROM THE CLINICAL EDITOR: Unique physical aspects of nanoparticles may lead to moderate to severe complement activation in vivo, which represents a challenge to clinical applicability. In order to guide the eventual development of biocompatible nanoparticles, this team of authors report a modified in vitro hemolysis-based assay developed in conjunction with their previously presented mouse model to enable in-depth structure-activity relationship studies.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Fluorocarburos/inmunología , Hemólisis/efectos de los fármacos , Nanopartículas/metabolismo , Animales , Fluorocarburos/química , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...