Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37027427

RESUMEN

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Espectroscopía de Resonancia Magnética , Antiparkinsonianos/metabolismo
2.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678574

RESUMEN

The GluR3 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) has been identified as a target for autoantibodies (Aabs) in autoimmune encephalopathy and other diseases. Recent studies have proposed mechanisms by which these Aabs act, but their exact role in neuronal excitability is yet to be established. Patient Aabs have been shown to bind to specific regions within the GluR3 subunit. GLUR3B peptides were designed based on described (ELISA) immunogenic epitopes for Aabs and an immunisation strategy was used to generate novel anti-AMPAR Aabs. Target-specific binding and specificity of affinity-purified anti-AMPAR Aabs was confirmed using enzyme-linked immunosorbent assay, immunocytochemistry and Western blot. Functional anti-AMPAR Aab effects were determined on excitatory postsynaptic currents (EPSCs) from primary hippocampal neurons using whole-cell patch-clamp electrophysiology. Acute (10 or 30 min) or longer-term (24 h) application of anti-AMPAR Aabs caused a significant reduction in the mean frequency of spontaneous and miniature EPSCs in hippocampal neurons. Our data demonstrate that anti-AMPAR Aabs targeting peptides linked to auto-immune diseases mediate inhibitory effects on neuronal excitability at the synaptic level, such effects may lead to disruption of the excitatory/inhibitory balance at a network level.

3.
Front Immunol ; 13: 969176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860259

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2022.884110.].

4.
Front Immunol ; 13: 884110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707541

RESUMEN

We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.


Asunto(s)
Anticuerpos , Simulación de Dinámica Molecular , Anticuerpos/química , Afinidad de Anticuerpos , Antígenos , Agua
5.
J Phys Chem B ; 125(11): 2929-2941, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33719460

RESUMEN

α-Synuclein (αS) is a presynaptic protein that binds to cell membranes and is linked to Parkinson's disease (PD). Binding of αS to membranes is a likely first step in the molecular pathophysiology of PD. The αS molecule can adopt multiple conformations, being largely disordered in water, adopting a ß-sheet conformation when present in amyloid fibrils, and forming a dynamic multiplicity of α-helical conformations when bound to lipid bilayers and related membrane-mimetic surfaces. Multiscale molecular dynamics simulations in conjunction with nuclear magnetic resonance (NMR) and cross-linking mass spectrometry (XLMS) measurements are used to explore the interactions of αS with an anionic lipid bilayer. The simulations and NMR measurements together reveal a break in the helical structure of the central non-amyloid-ß component (NAC) region of αS in the vicinity of residues 65-70, which may facilitate subsequent oligomer formation. Coarse-grained simulations of αS starting from the structure of αS when bound to a detergent micelle reveal the overall pattern of protein contacts to anionic lipid bilayers, while subsequent all-atom simulations provide details of conformational changes upon membrane binding. In particular, simulations and NMR data for liposome-bound αS indicate incipient ß-strand formation in the NAC region, which is supported by intramolecular contacts seen via XLMS and simulations. Markov state models based on the all-atom simulations suggest a mechanism of conformational change of membrane-bound αS via a dynamic helix break in the region of residue 65 in the NAC region. The emergent dynamic model of membrane-interacting αS advances our understanding of the mechanism of PD, potentially aiding the design of novel therapeutic approaches.


Asunto(s)
Simulación de Dinámica Molecular , alfa-Sinucleína , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , alfa-Sinucleína/metabolismo
6.
Front Immunol ; 11: 1894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973785

RESUMEN

Interleukin (IL)-17A is a key driver of inflammation and the principal target of anti-IL-17 therapeutic monoclonal antibodies. IL-17A, and its structurally similar family member IL-17F, have been shown to be functionally dysregulated in certain human immune-mediated inflammatory diseases such as psoriasis, psoriatic arthritis, and axial spondyloarthritis. Given the overlapping biology of these two cytokines, we postulated that dual neutralization of IL-17A and IL-17F may provide a greater depth of clinical response in IL-17-mediated diseases than IL-17A inhibition alone. We identified 496.g1, a humanized antibody with strong affinity for IL-17A but poor affinity for IL-17F. Affinity maturation of 496.g1 to 496.g3 greatly enhanced the affinity of the Fab fragment for IL-17F while retaining strong binding to IL-17A. As an IgG1, the affinity for IL-17A and IL-17F was 3.2 pM and 23 pM, respectively. Comparison of 496.g3 IgG1 with the commercially available anti-IL-17A monoclonal antibodies ixekizumab and secukinumab, by surface plasmon resonance and in a human in vitro IL-17A functional assay, showed that 496.g3 and ixekizumab display equivalent affinity for IL-17A, and that both antibodies are markedly more potent than secukinumab. In contrast to ixekizumab and secukinumab, 496.g3 exhibited the unique feature of also being able to neutralize the biological activity of IL-17F. Therefore, antibody 496.g3 was selected for clinical development for its ability to neutralize the biologic function of both IL-17A and IL-17F and was renamed bimekizumab (formerly UCB4940). Early clinical data in patients with psoriasis, in those with psoriatic arthritis, and from the Phase 2 studies in psoriasis, psoriatic arthritis, and ankylosing spondylitis, are encouraging and support the targeted approach of dual neutralization of IL-17A and IL-17F. Taken together, these findings provide the rationale for the continued clinical evaluation of bimekizumab in patients with immune-mediated inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Interleucina-17/antagonistas & inhibidores , Animales , Antiinflamatorios/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Células CHO , Simulación por Computador , Cricetulus , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Macaca fascicularis , Modelos Biológicos , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Psoriasis/metabolismo , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/metabolismo
7.
Mol Immunol ; 114: 643-650, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31546099

RESUMEN

Peptide vaccines have many potential advantages over conventional ones including low cost, lack of need for cold-chain storage, safety and specificity. However, it is well known that approximately 90% of B-cell epitopes (BCEs) are discontinuous in nature making it difficult to mimic them for creating vaccines. In this study, the degree of discontinuity in B-cell epitopes and their conformational nature is examined. The discontinuity of B-cell epitopes is analyzed by defining 'regions' (consisting of at least three antibody-contacting residues each separated by ≤3 residues) and small fragments (antibody-contacting residues that do not satisfy the requirements for a region). Secondly, an algorithm has been developed that classifies each region's shape as straight, curved or folded on the basis that straight and folded regions are more likely to retain their native conformation as isolated peptides. We have investigated the structures of 488 B-cell epitopes from which 1282 regions and 1018 fragments have been identified. 90% of epitopes have five or fewer regions and five or fewer fragments with 14% containing only one region and 4% being truly linear (i.e. having one region and no fragments). Of the 1282 regions, 508 are straight in shape, 626 are curved and 148 are folded.


Asunto(s)
Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Anticuerpos/química , Anticuerpos/inmunología , Mapeo Epitopo/métodos , Conformación Proteica
8.
Cell Rep ; 27(1): 172-186.e7, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943399

RESUMEN

We describe therapeutic monoclonal antibodies isolated from human volunteers vaccinated with recombinant adenovirus expressing Ebola virus glycoprotein (EBOV GP) and boosted with modified vaccinia virus Ankara. Among 82 antibodies isolated from peripheral blood B cells, almost half neutralized GP pseudotyped influenza virus. The antibody response was diverse in gene usage and epitope recognition. Although close to germline in sequence, neutralizing antibodies with binding affinities in the nano- to pico-molar range, similar to "affinity matured" antibodies from convalescent donors, were found. They recognized the mucin-like domain, glycan cap, receptor binding region, and the base of the glycoprotein. A cross-reactive cocktail of four antibodies, targeting the latter three non-overlapping epitopes, given on day 3 of EBOV infection, completely protected guinea pigs. This study highlights the value of experimental vaccine trials as a rich source of therapeutic human monoclonal antibodies.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Vacunas contra el Virus del Ébola/aislamiento & purificación , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/terapia , Vacunación , Adolescente , Adulto , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Células Cultivadas , Perros , Femenino , Cobayas , Células HEK293 , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Humanos , Células de Riñón Canino Madin Darby , Masculino , Persona de Mediana Edad , Vacunación/métodos , Adulto Joven
9.
Eur J Neurosci ; 49(4): 510-524, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30472757

RESUMEN

An emerging treatment for Parkinson's disease (PD) is cell replacement therapy. Authentic midbrain dopaminergic (mDA) neuronal precursors can be differentiated from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). These laboratory-generated mDA cells have been demonstrated to mature into functional dopaminergic neurons upon transplantation into preclinical models of PD. However, clinical trials with human fetal mesenchephalic cells have shown that cell replacement grafts in PD are susceptible to Lewy body formation suggesting host-to-graft transfer of α-synuclein pathology. Here, we have used CRISPR/Cas9n technology to delete the endogenous SNCA gene, encoding for α-synuclein, in a clinical-grade hESC line to generate SNCA+/- and SNCA-/- cell lines. These hESC lines were first differentiated into mDA neurons, and then challenged with recombinant α-synuclein preformed fibrils (PFFs) to seed the formation for Lewy-like pathology as measured by phosphorylation of serine-129 of α-synuclein (pS129-αSyn). Wild-type neurons were fully susceptible to the formation of protein aggregates positive for pS129-αSyn, while SNCA+/- and SNCA-/- neurons exhibited significant resistance to the formation of this pathological mark. This work demonstrates that reducing or completely removing SNCA alleles by CRISPR/Cas9n-mediated gene editing confers a measure of resistance to Lewy pathology.


Asunto(s)
Proteína 9 Asociada a CRISPR , Diferenciación Celular , Neuronas Dopaminérgicas , Células Madre Embrionarias , Edición Génica , Enfermedad de Parkinson/terapia , Sinucleinopatías , alfa-Sinucleína , Línea Celular , Humanos , Mesencéfalo/citología
10.
Acta Neuropathol ; 136(5): 729-745, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30238240

RESUMEN

In Alzheimer's disease (AD) and other tauopathies, the cytosolic protein Tau misfolds and forms intracellular aggregates which accumulate within the brain leading to neurodegeneration. Clinical progression is tightly linked to the progressive spread of Tau pathology throughout the brain, and several lines of evidence suggest that Tau aggregates or "seeds" may propagate pathology by spreading from cell to cell in a "prion like" manner. Accordingly, blocking the spread of extracellular seeds with an antibody could be a viable therapeutic approach. However, as the structure of Tau seeds is unknown, it is only possible to rationally design therapeutic Tau antibodies by making a priori assumptions. To avoid this, we developed a robust and quantitative cell based assay and employed an unbiased screening approach to identify the antibody with the highest activity against human Tau seeds. The selected antibody (D), directed to the mid-region of Tau (amino acids 235-250), potently blocked the seeding of human AD Tau and was also fully efficacious against seeds from progressive supranuclear palsy. When we compared this antibody with previously described reference antibodies, we were surprised to find that none of these antibodies showed comparable efficacy against human pathological seeds. Our data highlight the difficulty of predicting antibody accessible epitopes on pathological Tau seeds and question the potential efficacy of some of the Tau antibodies that are currently in clinical development.


Asunto(s)
Anticuerpos/metabolismo , Epítopos/inmunología , Proteínas tau/química , Proteínas tau/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Mapeo Epitopo , Epítopos/química , Células HEK293 , Humanos , Agregado de Proteínas , Conformación Proteica , Resonancia por Plasmón de Superficie , Transfección , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Int J Surg Case Rep ; 49: 4-7, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29908450

RESUMEN

INTRODUCTION: Cervical Sympathetic Chain Schwannomas (CSCS) of the carotid sheath are rare neoplasms that can be misdiagnosed on imaging. The following case documents a rare incident of a misdiagnosed CSCS with unusual outcomes of permanent Horner's syndrome and facial pain. PRESENTATION OF CASE: A 36-year-old female presented with a slow-growing neck mass. CT and MRI led to a preoperative diagnosis of vagus nerve schwannoma (VNS). However, surgical treatment revealed the mass to be involved with the cervical sympathetic chain rather than the vagus nerve. The diagnosis was corrected to CSCS and the nerve was resected with the mass. The patient presented postoperatively with Horner's syndrome and severe facial pain. These symptoms persisted despite two years of medical management. DISCUSSION: Studies indicate that imaging trends used for distinction between VNS and CSCS show inconsistencies in making preoperative diagnoses. Recent literature reveals helpful criteria for improving diagnostic standards that assist with preoperative patient counseling. In addition, postoperative outcomes, such as temporary, asymptomatic Horner's syndrome are common in CSCS. The following case report exemplifies the difficulties in diagnosis and addresses the unique complications of facial pain and permanent Horner's syndrome. CONCLUSION: This case report examines postoperative outcomes and improves clinician awareness of the potential for misdiagnosis of a rare neoplasm and the recently improved diagnostic measures, providing for higher quality preoperative counseling. Future research is recommended to confirm and improve diagnostic guidelines and accuracy. Additional studies may focus on evaluating the effects of incorrect preoperative diagnosis on postoperative complication rates.

12.
Chemistry ; 24(9): 2094-2097, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29267987

RESUMEN

Modified peptides, such as stapled peptides, which replicate the structure of α-helical protein segments, represent a potential therapeutic advance. However, the 3D solution structure of these stapled peptides is rarely explored beyond the acquisition of circular dichroism (CD) data to quantify bulk peptide helicity; the detailed backbone structure, which underlies this, is typically undefined. Diastereomeric stapled peptides based on helical sections of three proteins (αSyn, Cks1 and CK1α) were generated; their overall helicity was quantified by CD; and the most helical peptide from each series was selected for structural analysis. Solution-phase models for the optimised peptides were generated using NMR-derived restraints and a modified CHARMM22 force field. Comparing these models with PDB structures allowed deviation between the stapled peptides and critical helical regions to be evaluated. These studies demonstrate that CD alone is not sufficient to assess the structural fidelity of a stapled peptide.

13.
Ann Rheum Dis ; 77(4): 523-532, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29275332

RESUMEN

OBJECTIVE: Interleukin (IL)-17A has emerged as pivotal in driving tissue pathology in immune-mediated inflammatory diseases. The role of IL-17F, sharing 50% sequence homology and overlapping biological function, remains less clear. We hypothesised that IL-17F, together with IL-17A, contributes to chronic tissue inflammation, and that dual neutralisation may lead to more profound suppression of inflammation than inhibition of IL-17A alone. METHODS: Preclinical experiments assessed the role of IL-17A and IL-17F in tissue inflammation using disease-relevant human cells. A placebo-controlled proof-of-concept (PoC) clinical trial randomised patients with psoriatic arthritis (PsA) to bimekizumab (n=39) or placebo (n=14). Safety, pharmacokinetics and clinical efficacy of multiple doses (weeks 0, 3, 6 (240 mg/160 mg/160 mg; 80 mg/40 mg/40 mg; 160 mg/80 mg/80 mg and 560 mg/320 mg/320 mg)) of bimekizumab, a humanised monoclonal IgG1 antibody neutralising both IL-17A and IL-17F, were investigated. RESULTS: IL-17F induced qualitatively similar inflammatory responses to IL-17A in skin and joint cells. Neutralisation of IL-17A and IL-17F with bimekizumab more effectively suppressed in vitro cytokine responses and neutrophil chemotaxis than inhibition of IL-17A or IL-17F alone. The PoC trial met both prespecified efficacy success criteria and showed rapid, profound responses in both joint and skin (pooled top three doses vs placebo at week 8: American College of Rheumatology 20% response criteria 80.0% vs 16.7% (posterior probability >99%); Psoriasis Area and Severity Index 100% response criteria 86.7% vs 0%), sustained to week 20, without unexpected safety signals. CONCLUSIONS: These data support IL-17F as a key driver of human chronic tissue inflammation and the rationale for dual neutralisation of IL-17A and IL-17F in PsA and related conditions. TRIAL REGISTRATION NUMBER: NCT02141763; Results.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/inmunología , Artritis Psoriásica/tratamiento farmacológico , Interleucina-17/inmunología , Adulto , Anticuerpos Monoclonales Humanizados/inmunología , Artritis Psoriásica/inmunología , Método Doble Ciego , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Interleucina-17/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Prueba de Estudio Conceptual , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
14.
Sci Rep ; 7: 41306, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128368

RESUMEN

Therapeutic and diagnostic applications of monoclonal antibodies often require careful selection of binders that recognize specific epitopes on the target molecule to exert a desired modulation of biological function. Here we present a proof-of-concept application for the rational design of an epitope-specific antibody binding with the target protein Keap1, by grafting pre-defined structural interaction patterns from the native binding partner protein, Nrf2, onto geometrically matched positions of a set of antibody scaffolds. The designed antibodies bind to Keap1 and block the Keap1-Nrf2 interaction in an epitope-specific way. One resulting antibody is further optimised to achieve low-nanomolar binding affinity by in silico redesign of the CDRH3 sequences. An X-ray co-crystal structure of one resulting design reveals that the actual binding orientation and interface with Keap1 is very close to the design model, despite an unexpected CDRH3 tilt and VH/VL interface deviation, which indicates that the modelling precision may be improved by taking into account simultaneous CDR loops conformation and VH/VL orientation optimisation upon antibody sequence change. Our study confirms that, given a pre-existing crystal structure of the target protein-protein interaction, hotspots grafting with CDR loop swapping is an attractive route to the rational design of an antibody targeting a pre-selected epitope.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Epítopos/química , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/química , Secuencia de Aminoácidos/genética , Anticuerpos Monoclonales/química , Afinidad de Anticuerpos/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Simulación por Computador , Cristalografía por Rayos X , Epítopos/inmunología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/inmunología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/inmunología , Unión Proteica/genética , Unión Proteica/inmunología
15.
Sci Rep ; 7: 37716, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134246

RESUMEN

Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the "junctional epitope" nature of VHH6, a camelid single domain antibody recognizing the IL-6-gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions.


Asunto(s)
Anticuerpos/química , Mapeo Epitopo , Interleucina-6/inmunología , Receptores de Interleucina-6/inmunología , Animales , Anticuerpos/inmunología , Células CHO , Camelus/inmunología , Cricetulus , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Fosforilación , Estructura Terciaria de Proteína , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
16.
MAbs ; 8(7): 1336-1346, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27315033

RESUMEN

We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/sangre , Región Variable de Inmunoglobulina/sangre , Albúmina Sérica/inmunología , Animales , Afinidad de Anticuerpos , Semivida , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Ratones
17.
J Reprod Immunol ; 116: 7-12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27123565

RESUMEN

Antibodies to tumor necrosis factor (anti-TNF) are used to treat inflammatory diseases, which often affect women of childbearing age. The active transfer of these antibodies across the placenta by binding of the Fc-region to the neonatal Fc receptor (FcRn) may result in adverse fetal or neonatal effects. In contrast to other anti-TNFs, certolizumab pegol lacks an Fc-region. The objective of this study was to determine whether the structure of certolizumab pegol limits active placental transfer. Binding affinities of certolizumab pegol, infliximab, adalimumab and etanercept to human FcRn and FcRn-mediated transcytosis were determined using in vitro assays. Human placentas were perfused ex vivo to measure transfer of certolizumab pegol and positive control anti-D IgG from the maternal to fetal circulation. FcRn binding affinity (KD) was 132nM, 225nM and 1500nM for infliximab, adalimumab and etanercept, respectively. There was no measurable certolizumab pegol binding affinity, similar to that of the negative control. FcRn-mediated transcytosis across a cell layer (mean±SD; n=3) was 249.6±25.0 (infliximab), 159.0±20.2 (adalimumab) and 81.3±13.1ng/mL (etanercept). Certolizumab pegol transcytosis (3.2±3.4ng/mL) was less than the negative control antibody (5.9±4.6ng/mL). No measurable transfer of certolizumab pegol from the maternal to the fetal circulation was observed in 5 out of 6 placentas that demonstrated positive-control IgG transport in the ex vivo perfusion model. Together these results support the hypothesis that the unique structure of certolizumab pegol limits its transfer through the placenta to the fetus and may be responsible for previously reported differences in transfer of other anti-TNFs from mother to fetus.


Asunto(s)
Certolizumab Pegol/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/metabolismo , Placenta/metabolismo , Receptores Fc/metabolismo , Transcitosis , Adalimumab/metabolismo , Células Cultivadas , Femenino , Humanos , Infliximab/metabolismo , Técnicas de Cultivo de Órganos , Circulación Placentaria , Embarazo , Unión Proteica , Factor de Necrosis Tumoral alfa/inmunología
18.
MAbs ; 8(4): 751-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963563

RESUMEN

Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.


Asunto(s)
Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/clasificación , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular
19.
Nat Commun ; 5: 4388, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25073737

RESUMEN

The ability to conditionally direct antibodies is a potentially powerful application for Synthetic Biology in Medicine. Here we show that control of antibody binding through site-specific, chemical phosphorylation of a recognition domain creates a 'gated' antibody (Ab). This displays a crude Boolean logic where binding is induced in an enzyme-AND-antigen dependent manner. This 'AND-Ab' is therefore active only in the presence of two biomarker inputs: the simultaneous expression of a (cell surface) antigen and secreted enzyme to generate function in vitro, on cells and in mammalian tissue. Such gated Abs, either alone or in combination, could allow the application of logic strategies to enhance precision in biological interrogation, modulation and in therapy.


Asunto(s)
Anticuerpos/genética , Anticuerpos/metabolismo , Formación de Anticuerpos/fisiología , Técnicas de Química Sintética/métodos , Animales , Formación de Anticuerpos/genética , Ensayo de Inmunoadsorción Enzimática , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Muramidasa/metabolismo , Fosforilación , Unión Proteica
20.
Bioinformatics ; 30(16): 2288-94, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24753488

RESUMEN

MOTIVATION: Antibodies are currently the most important class of biopharmaceuticals. Development of such antibody-based drugs depends on costly and time-consuming screening campaigns. Computational techniques such as antibody-antigen docking hold the potential to facilitate the screening process by rapidly providing a list of initial poses that approximate the native complex. RESULTS: We have developed a new method to identify the epitope region on the antigen, given the structures of the antibody and the antigen-EpiPred. The method combines conformational matching of the antibody-antigen structures and a specific antibody-antigen score. We have tested the method on both a large non-redundant set of antibody-antigen complexes and on homology models of the antibodies and/or the unbound antigen structure. On a non-redundant test set, our epitope prediction method achieves 44% recall at 14% precision against 23% recall at 14% precision for a background random distribution. We use our epitope predictions to rescore the global docking results of two rigid-body docking algorithms: ZDOCK and ClusPro. In both cases including our epitope, prediction increases the number of near-native poses found among the top decoys. AVAILABILITY AND IMPLEMENTATION: Our software is available from http://www.stats.ox.ac.uk/research/proteins/resources.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Epítopos de Linfocito B/química , Simulación del Acoplamiento Molecular/métodos , Algoritmos , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...