Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730849

RESUMEN

This study represents an advancement in the field of composite material engineering, focusing on the synthesis of composite materials derived from porous hydroxyapatite via surface modification employing cucurbit[n]urils, which are highly promising macrocyclic compounds. The surface modification procedure entailed the application of cucurbit[n]urils in an aqueous medium onto the hydroxyapatite surface. A comprehensive characterization of the resulting materials was undertaken, employing analytical techniques including infrared (IR) spectroscopy and scanning electron microscopy (SEM). Subsequently, the materials were subjected to rigorous evaluation for their hemolytic effect, anti-inflammatory properties, and cytotoxicity. Remarkably, the findings revealed a notable absence of typical hemolytic effects in materials incorporating surface-bound cucurbit[n]urils. This observation underscores the potential of these modified materials as biocompatible alternatives. Notably, this discovery presents a promising avenue for the fabrication of resilient and efficient biocomposites, offering a viable alternative to conventional approaches. Furthermore, these findings hint at the prospect of employing supramolecular strategies involving encapsulated cucurbit[n]urils in analogous processes. This suggests a novel direction for further research, potentially unlocking new frontiers in material engineering through the exploitation of supramolecular interactions.

2.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611887

RESUMEN

This study aimed to create new composite materials based on diatomite-a non-organic porous compound-through its surface modification with bioactive organic compounds, both synthetic and natural. Chloramphenicol, tetrahydroxymethylglycoluril and betulin were used as modifying substances. Composite materials were obtained by covering the diatomite surface with bioactive substance compounds as a solution and material dispersion in it. The materials were characterized by IR spectroscopy, SEM and X-ray photoelectron spectroscopy. For the biocomposites, the hemolytic effect, plasma proteins' adsorption on the surface and the antibacterial activity of the obtained materials were studied. Results show that the obtained materials are promising for medicine and agriculture.


Asunto(s)
Antibacterianos , Cloranfenicol , Antibacterianos/farmacología , Tierra de Diatomeas/farmacología , Adsorción , Materiales Biocompatibles/farmacología
3.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398603

RESUMEN

Due to traumatic injuries, including those from surgical procedures, adhesions occur in over 50% of cases, necessitating exclusive surgical intervention for treatment. However, preventive measures can be implemented during abdominal organ surgeries. These measures involve creating a barrier around internal organs to forestall adhesion formation in the postoperative phase. Yet, the effectiveness of the artificial barrier relies on considerations of its biocompatibility and the avoidance of adverse effects on the body. This study explores the biocompatibility aspects, encompassing hemocompatibility, cytotoxicity, and antibacterial and antioxidant activities, as well as the adhesion of blood serum proteins and macrophages to the surface of new composite film materials. The materials, derived from the sodium salt of carboxymethylcellulose modified by glycoluril and allantoin, were investigated. The research reveals that film materials with a heterocyclic fragment exhibit biocompatibility comparable to commercially used samples in surgery. Notably, film samples developed with glycoluril outperform the effects of commercial samples in certain aspects.


Asunto(s)
Ácido Hialurónico , Urea , Humanos , Adherencias Tisulares/prevención & control , Carboximetilcelulosa de Sodio
4.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067411

RESUMEN

The absorption/desorption of water vapor by bambus[6]uril (Bu[6]) has been studied. According to kinetic experiments, the absorption capacity of Bu[6] is 4 moles of water per 1 mole of Bu[6] with the absorption duration of 20 min and the complete desorption duration of 100 min. Experimental rate constants for water vapor absorption and desorption by Bu[6] have been determined to be 0.166 min-1 and 0.0221 min-1, respectively. The obtained results are in agreement with theoretical calculations using the DFT method. A hypothetical structure of bambus[6]uril tetrahydrate (Bu[6]·4H2O) has been proposed based on the experimental and DFT data.

5.
Materials (Basel) ; 16(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068001

RESUMEN

In this present investigation, a novel series of composite materials based on porous inorganic compounds-hydroxyapatite and diatomite-have been innovatively formulated for the first time through surface modification employing the promising macromolecular compound, bambus[6]uril. The process entailed the application of a bambus[6]uril dispersion in water onto the surfaces of hydroxyapatite and diatomite. Extensive characterization was carried out, involving IR spectroscopy and SEM. The materials underwent assessment for hemolytic effects and plasma protein adsorption. The results revealed that materials containing surface-bound bambus[6]uril did not demonstrate inherent hemolytic effects, laying a robust groundwork for their use as biocompatible materials. These findings hold significant promise as an alternative pathway for the development of durable and efficient bio-composites, potentially unveiling supramolecular strategies incorporating encapsulated bambus[6]urils in analogous processes.

6.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069405

RESUMEN

This work presents the synthesis of a new compound, 1-[aryl-(diphenylphosphono)methyl]-3,4,6-trimethylglycolurils, via the interaction of benzaldehyde and its mononitro- and monohydroxyderivatives with 1,3,4-trimethylglycoluril and triphenylphosphite. By varying the reaction conditions and the catalysts, the obtained product yields ranged from satisfactory to good. The diastereomers formed during the reaction were separated by semipreparative HPLC on the C18 stationary phase. The isolated diastereomers were characterized by 1H, 13C, and 31P NMR, and the structures of the diastereomers were confirmed using a single-crystal X-ray crystal structure analysis and quantum chemical calculations.

7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003315

RESUMEN

The prevalence of numerous infectious diseases has emerged as a grave concern within the realm of healthcare. Currently, the issue of antibiotic resistance is compelling scientists to explore novel treatment approaches. To combat these infectious diseases, various treatment methods have been developed, harnessing cutting-edge disinfecting nanomaterials. Among the range of metallic nanoparticles employed in medicine, silver nanoparticles (AgNPs) stand out as both highly popular and well-suited for the task. They find extensive utility in cancer diagnosis and therapies and as effective antibacterial agents. The interaction between silver and bacterial cells induces significant structural and morphological alterations, ultimately leading to cell demise. In this study, nanoparticles based on silver and bambusuril[6] (BU[6]) were developed for the first time. These NPs can be used for different biomedical purposes. A simple, single-step, and effective synthesis method was employed to produce bambusuril[6]-protected silver chloride nanoparticles (BU[6]-Ag/AgCl NPs) through the complexation of BU[6] with silver nitrate. The NPs were characterized using X-ray phase analysis (XPS), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). When the SEM images were examined, it was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous sizes, and the synthesized NPs were mostly spherical and cubic. The EDS spectra of BU[6]-Ag/AgCl NPs demonstrated the presence of Ag, Cl, and all expected elements. BU[6]-Ag/AgCl NPs showed high antibacterial activity against both E. coli and S. aureus bacteria.


Asunto(s)
Enfermedades Transmisibles , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Staphylococcus aureus , Escherichia coli , Plata , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier
8.
Molecules ; 28(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630198

RESUMEN

This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency to form dimers, polymorphism and isomerization, are considered. This article outlines ways to improve not only the bioavailability but also the solubility of triterpenoids, as well as any hydrophobic drug substances, through chemical transformations by introducing various functional groups, such as carboxyl, hydroxyl, amino, phosphate/phosphonate and carbonyl. The authors of this article summarized the physicochemical characteristics of betulin and its compounds, systematized the literature data on IR and NMR spectroscopy and gave the melting temperatures of key acids and aldehydes based on betulin.

9.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677593

RESUMEN

N-Benzhydrylformamides are pharmacologically active compounds with anticonvulsant, enzyme-inducing, antihypoxic, and other types of biological activity. The conformational behavior of benzhydrylformamides is determined to a great extent by the presence of substituents at the nitrogen atom and in the ortho-position(s) of the diphenylmethane moiety. Particularly, the NMR spectra of these compounds often contain two sets of signals originating from different orientations of the formyl group. With the use of the dynamic NMR method and DFT calculations, we investigated the internal rotations of aromatic and formyl fragments and estimated the corresponding rotational barriers in N-benzhydrylformamide (BHFA), N-methyl-N-benzhydrylformamide (BHFA-NMe), and in a series of ortho-halogen-substituted N-benzhydrylformamides. It was found that the DFT method at M06-2X/6-311+G* level of theory satisfactorily reproduces the experimental barrier ΔG298≠(Formyl) of the formyl group rotation in BHFA-NMe. In BHFA, BHFA-NMe, and in the ortho-halogen derivatives, the calculated ΔG298≠(Formyl) values are close to each other and lie within 20-23 kcal/mol. On the other hand, the ortho-substituents significantly hinder the rotation of aryl fragment with ΔG298≠(Aryl) values varying from 2.5 kcal/mol in BHFA to 9.8 kcal/mol in ortho-iodo-N-benzhydrylformamide.

10.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614409

RESUMEN

For the first time, we performed functionalization of the surface of porous titanium nickelide alloys with bambusuril[6]-based macrocyclic compounds by different methods in order to provide the basis for saturation with therapeutic agents to impart antibacterial activity and accelerate its osteogenesis. It has been shown for the first time that the vacuum modification method is preferable for bambusuril deposition, since it provides a uniform deposition of organic matter on both the outer and inner surfaces of the pores. The effect of bambusuril deposition methods on the continuity, structure, and cytocompatibility of the porous titanium nickelide surface was evaluated. In vitro tests proved high biocompatibility and low toxicity of porous TiNi treated with BU[6] under vacuum. The SEM study of the structure of the surface layer of TiNi modified with BU[6] under the vacuum method showed that BU[6] agglomerates are uniformly deposited on the inner and outer surfaces of TiNi pores, which will provide an even saturation of BU[6] cavities with various pharmaceuticals, including antibiotics and inhibitors.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32992211

RESUMEN

A selective and sensitive procedure for quantitation of a new antithrombotic drug (GRS) in rat plasma was developed and validated using an HPLC-UV. The method was validated according to recommendations of the FDA, EMA in terms of selectivity, linearity, accuracy, precision, recovery, matrix effect, stability, and carry-over. The preparation of the biological sample included liquid-liquid extraction with acetonitrile, separation of water-organic mixture with inorganic salts, organic phase clean-up with a sorbent (QuEChERS method), its evaporation to dryness and reconstitution of the residue with A:B eluents mixture (1:1). The chromatographic separations were performed on a micro-column 75 × 2 mm, 5 µm particle size sorbent ProntoSIL 120-5-C18 AQ. The flowrate was of 0.15 ml/min, detector wavelength was set at 360 nm for GRS and at 230 nm for papaverine (IS). It was found that GRS recovery from rat plasma is 94%, the response linearity is in the range of 10 to 1000 ng ml-1. The accuracy values for intra-day determination were of 93.2 to 101.8%, for inter-day determination were of 91.2 to 102.2%, coefficient of variation for intra- and inter-day precision did not exceed 4.1 to 9.3%. The application of the method was shown in pharmacokinetic studies of GRS in rats at a dose of 20 mg kg-1.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fibrinolíticos/sangre , Fibrinolíticos/farmacocinética , Animales , Fibrinolíticos/química , Límite de Detección , Modelos Lineales , Extracción Líquido-Líquido , Masculino , Nitrilos/sangre , Nitrilos/química , Nitrilos/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA