Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614201

RESUMEN

Once prostate cancer cells metastasize to bone, they perceive approximately 2 kPa compression. We hypothesize that 2 kPa compression stimulates the epithelial-to-mesenchymal transition (EMT) of prostate cancer cells and alters their production of paracrine signals to affect osteoclast and osteoblast behavior. Human DU145 prostate cancer cells were subjected to 2 kPa compression for 2 days. Compression decreased expression of 2 epithelial genes, 5 out of 13 mesenchymal genes, and increased 2 mesenchymal genes by DU145 cells, as quantified by qPCR. Conditioned medium (CM) of DU145 cells was added to human monocytes that were stimulated to differentiate into osteoclasts for 21 days. CM from compressed DU145 cells decreased osteoclast resorptive activity by 38% but did not affect osteoclast size and number compared to CM from non-compressed cells. CM was also added to human adipose stromal cells, grown in osteogenic medium. CM of compressed DU145 cells increased bone nodule production (Alizarin Red) by osteoblasts from four out of six donors. Compression did not affect IL6 or TNF-α production by PC DU145 cells. Our data suggest that compression affects EMT-related gene expression in DU145 cells, and alters their production of paracrine signals to decrease osteoclast resorptive activity while increasing mineralization by osteoblasts is donor dependent. This observation gives further insight in the altered behavior of PC cells upon mechanical stimuli, which could provide novel leads for therapies, preventing bone metastases.


Asunto(s)
Resorción Ósea , Neoplasias de la Próstata , Masculino , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Huesos/metabolismo , Resorción Ósea/metabolismo , Neoplasias de la Próstata/metabolismo , Diferenciación Celular
2.
Biochem Biophys Res Commun ; 646: 70-77, 2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36706708

RESUMEN

Once prostate cancer (PC) metastasizes towards bone the 5-year survival rates drop with 70%, but it is largely unknown why. Bone is continuously mechanically loaded, which likely modulates the paracrine signaling from osteocytes towards PC cells to affect tumor behavior. We hypothesize that shear loaded osteocytes affect PC cell proliferation, invasion and epithelial and mesenchymal-related gene and protein expression. We cultured human DU145 cells, a commonly used cell line for prostate cancer metastases, in the conditioned medium (CM) from shear loaded or unloaded human osteocyte-like-cells (OCYLCs) for 1 and 3 days and assessed their number by staining nuclei with DAPI, their invasion by performing an invasion assay, and epithelial-to-mesenchymal (EMT)-related gene and protein expression by qPCR and immunocytochemistry. CM of shear loaded OCYLCs did not affect DU145 cell number compared to CM of static cultured OCYLCs, but decreased their invasion 1.34-fold. CM of shear loaded OCYLCs enhanced expression of epithelial genes: SYND1 and CDH1 after day 1, while it also enhanced CDH1 after day 3. CM of shear loaded osteocytes enhanced mesenchymal genes: VMN, Snail and MIP2 after day 1, while it decreased expression of mesenchymal CYR61 after day 3. We conclude that CM of shear loaded OCYLCs does not affect DU145 cell proliferation, but decreases their invasion, and differentially affects their EMT-related gene expression. Identifying paracrine signals from shear loaded osteocytes that decrease PC cell invasion may provide novel leads in developing treatments for bone metastases from PC.


Asunto(s)
Osteocitos , Neoplasias de la Próstata , Masculino , Humanos , Osteocitos/metabolismo , Línea Celular , Neoplasias de la Próstata/patología , Proliferación Celular , Expresión Génica , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Invasividad Neoplásica
3.
Sci Rep ; 12(1): 21578, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517534

RESUMEN

Supraphysiological loading induced by unstable orthopedic implants initiates osteoclast formation, which results in bone degradation. We aimed to investigate which mechanosensitive cells in the peri-implant environment produce osteoclast-stimulating factors and how the production of these factors is stimulated by supraphysiological loading. The release of osteoclast-stimulating factors by different types of isolated bone marrow-derived hematopoietic and mesenchymal stem cells from six osteoarthritic patients was analyzed after one hour of supraphysiological loading (3.0 ± 0.2 Pa, 1 Hz) by adding their conditioned medium to osteoclast precursors. Monocytes produced factors that enhanced osteoclastogenesis by 1.6 ± 0.07-fold and mesenchymal stem cells by 1.4 ± 0.07-fold. Medium from osteoprogenitors and pre-osteoblasts enhanced osteoclastogenesis by 1.3 ± 0.09-fold and 1.4 ± 0.03-fold, respectively, where medium from four patients elicited a response and two did not. Next generation sequencing analysis of osteoprogenitors revealed that genes encoding for inflammation-related pathways and cytoskeletal rearrangements were regulated differently between responders and non-responders. Our data suggest that released osteoclast-stimulating soluble factors by progenitor cells in the bone marrow after supraphysiological loading may be related to cytoskeletal arrangement in an inflammatory environment. This connection could be relevant to better understand the aseptic loosening process of orthopedic implants.


Asunto(s)
Osteoclastos , Osteogénesis , Humanos , Osteoclastos/metabolismo , Diferenciación Celular/fisiología , Osteogénesis/genética , Células Madre/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ligando RANK/metabolismo
4.
Sci Prog ; 105(3): 368504221115232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35850569

RESUMEN

OBJECTIVE: To investigate the diagnosis and treatment procedure of synovial chondromatosis (SC) of the temporomandibular joint (TMJ). METHODS: Clinical features, imaging features, surgical methods, and prognosis of 7 patients with SC of the TMJ were analyzed. We also reviewed and analyzed surgery-relevant literature included in the Pubmed database in the past decade using the search terms "synovial chondromatosis" and "temporomandibular joint", and found 181 cases. RESULTS: There was no specific difference in the symptoms of SC in the TMJ in different Milgram's stages in our cases and the cases mentioned in the literature. The main symptoms of SC in the TMJ were pain (100%, 7/7; 64.64%, 117/181), limited mouth opening (57.14%, 4/7; 53.59%, 97/181), swelling (14.29%, 1/7; 28.18%, 51/181), crepitus (28.57%, 2/7; 19.34%, 35/181), and clicking (14.29%, 1/7; 9.94%, 18/181) in our cases and cases from literature separately. The imaging features of SC were occupying lesions (including loose bodies or masses) (71.42%, 5/7; 37.57%, 68/181), bone change in condyle or glenoid fossa (1/7, 14.29%; 34.81%, 63/181), effusion (42.86%, 3/7; 20.99%, 38/181), joint space changes (42.86%, 3/7; 11.05%, 20/181) in our cases and cases from literature separately. The surgical procedures seem to depend mainly on the involved structures and the extension of the lesion rather than the Milgram's stage. CONCLUSIONS: The clinical features of SC in the TMJ are nonspecific and easy to be misdiagnosed. MRI is helpful in the diagnosis of SC in the TMJ. The surgical procedures mainly depend on the involved structures and the extension of the lesion.


Asunto(s)
Condromatosis Sinovial , Condromatosis , Cuerpos Libres Articulares , Trastornos de la Articulación Temporomandibular , Condromatosis/patología , Condromatosis Sinovial/diagnóstico por imagen , Condromatosis Sinovial/cirugía , Humanos , Cuerpos Libres Articulares/patología , Cuerpos Libres Articulares/cirugía , Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/patología , Articulación Temporomandibular/cirugía , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Trastornos de la Articulación Temporomandibular/cirugía
5.
Exp Cell Res ; 417(1): 113204, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588795

RESUMEN

Muscle stem cells (MuSCs) are involved in muscle maintenance and regeneration. Mechanically loaded MuSCs within their native niche undergo tensile and shear deformations, but how MuSCs sense mechanical stimuli and translate these into biochemical signals regulating function and fate is still poorly understood. We aimed to investigate whether the glycocalyx is involved in the MuSC mechanoresponse, and whether MuSC morphology affects mechanical loading-induced pressure, shear stress, and fluid velocity distribution. FSS-induced deformation of active proliferating MuSCs (myoblasts) with intact or degraded glycocalyx was assessed by live-cell imaging. Glycocalyx-degradation did not significantly affect nitric oxide production, but reduced FSS-induced myoblast deformation and modulated gene expression. Finite-element analysis revealed that the distribution of FSS-induced pressure, shear stress, and fluid velocity on myoblasts was non-uniform, and the magnitude depended on myoblast morphology and apex-height. In conclusion, our results suggest that the glycocalyx does not play a role in NO production in myoblasts but might impact mechanotransduction and gene expression, which needs further investigation. Future studies will unravel the underlying mechanism by which the glycocalyx affects FSS-induced myoblast deformation, which might be related to increased drag forces. Moreover, MuSCs with varying apex-height experience different levels of FSS-induced pressure, shear stress, and fluid velocity, suggesting differential responsiveness to fluid shear forces.


Asunto(s)
Glicocálix , Mecanotransducción Celular , Glicocálix/metabolismo , Mecanotransducción Celular/fisiología , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Estrés Mecánico
6.
Biomolecules ; 12(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204670

RESUMEN

Standard cell cultures may not predict the proliferation and differentiation potential of human mesenchymal stromal cells (MSCs) after seeding on a scaffold and implanting this construct in a bone defect. We aimed to develop a more biologically relevant in vitro 3D-model for preclinical studies on the bone regeneration potential of MSCs. Human adipose tissue-derived mesenchymal stromal cells (hASCs; five donors) were seeded on biphasic calcium phosphate (BCP) granules and cultured under hypoxia (1% O2) for 14 days with pro-inflammatory TNFα, IL4, IL6, and IL17F (10 mg/mL each) added during the first three days, simulating the early stages of repair (bone construct model). Alternatively, hASCs were cultured on plastic, under 20% O2 and without cytokines for 14 days (standard cell culture). After two days, the bone construct model decreased total DNA (3.9-fold), COL1 (9.8-fold), and RUNX2 expression (19.6-fold) and metabolic activity (4.6-fold), but increased VEGF165 expression (38.6-fold) in hASCs compared to standard cultures. After seven days, the bone construct model decreased RUNX2 expression (64-fold) and metabolic activity (2.3-fold), but increased VEGF165 (54.5-fold) and KI67 expression (5.7-fold) in hASCs compared to standard cultures. The effect of the bone construct model on hASC proliferation and metabolic activity could be largely mimicked by culturing on BCP alone (20% O2, no cytokines). The effect of the bone construct model on VEGF165 expression could be mimicked by culturing hASCs under hypoxia alone (plastic, no cytokines). In conclusion, we developed a new, biologically relevant in vitro 3D-model to study the bone regeneration potential of MSCs. Our model is likely more suitable for the screening of novel factors to enhance bone regeneration than standard cell cultures.


Asunto(s)
Osteogénesis , Células Madre , Tejido Adiposo , Regeneración Ósea , Diferenciación Celular , Células Cultivadas , Humanos
7.
Cranio ; : 1-8, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986737

RESUMEN

OBJECTIVE: To study the correlation between condylar morphology and clinical manifestations in patients with degenerative joint disease (DJD) of the temporomandibular joint (TMJ). METHODS: A total of 175 joints of 131 patients with DJD were included. Data on patients' basic information and symptoms were collected and analyzed. Condylar morphology was evaluated using cone beam computed tomography (CBCT). The correlation between the condylar morphology and clinical manifestations was analyzed. RESULTS: The prevalence of joint noises, clicks, and crepitus was 93/175 (53%), 73/175 (42%), and 20/175 (11%), respectively. Condylar anteroposterior diameter and condylar height were correlated with pain. There was a correlation between the shape of the condyle in the sagittal plane and joint noise. CONCLUSION: Condylar morphology and clinical features of DJD were correlated to some extent.

8.
Cell Biochem Biophys ; 80(1): 161-170, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35067867

RESUMEN

During myofiber regeneration, myoblasts are continuously subjected to shear stress. It is currently not known whether shear stress affects the regenerative capacity of myoblasts when extracellular matrix (ECM) stiffness increases (e.g. upon aging). Therefore, we aimed to assess (1) whether matrix stiffness and pulsating fluid shear stress affect myoblast proliferation and/or expression of differentiation-associated genes in myoblasts, and (2) whether matrix stiffness modulates the mechanoresponse of myoblasts to pulsating fluid shear stress. Myoblasts were seeded on matrigel-coated polyacrylamide gel matrices of varying stiffness, mimicking young ("soft", 0.5 kPa) and old ECM ("stiff", 20 kPa), as well as on matrigel-coated glass matrices with very high stiffness (40 ϺPa), and subjected to 1 h pulsating fluid shear stress (3 Pa/s or 4 Pa/s, 1 Hz). We found enhanced proliferation of myoblasts on stiff matrices, but reduced differentiation compared to myoblasts on soft matrices. Pulsating fluid shear stress significantly upregulated gene expression of proliferation-associated genes C-fos and Il-6, as well as expression of cytoskeletal α-actin in myoblasts seeded on glass. In contrast, pulsating fluid shear stress significantly downregulated gene expression of α-actin and Myogenin in myoblasts seeded on soft matrices. In conclusion, these results suggest that age and disease-associated increased ECM stiffness may contribute to declined regenerative capacity of myoblasts, by reducing their capacity to differentiate into new muscular tissue, at least in the absence of mechanical stimulation.


Asunto(s)
Matriz Extracelular , Mioblastos , Diferenciación Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Estrés Mecánico
9.
Aging (Albany NY) ; 14(1): 28-53, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023852

RESUMEN

Aging-associated muscle wasting and impaired regeneration are caused by deficiencies in muscle stem cell (MuSC) number and function. We postulated that aged MuSCs are intrinsically impaired in their responsiveness to omnipresent mechanical cues through alterations in MuSC morphology, mechanical properties, and number of integrins, culminating in impaired proliferative capacity. Here we show that aged MuSCs exhibited significantly lower growth rate and reduced integrin-α7 expression as well as lower number of phospho-paxillin clusters than young MuSCs. Moreover, aged MuSCs were less firmly attached to matrigel-coated glass substrates compared to young MuSCs, as 43% of the cells detached in response to pulsating fluid shear stress (1 Pa). YAP nuclear localization was 59% higher than in young MuSCs, yet YAP target genes Cyr61 and Ctgf were substantially downregulated. When subjected to pulsating fluid shear stress, aged MuSCs exhibited reduced upregulation of proliferation-related genes. Together these results indicate that aged MuSCs exhibit impaired mechanosensitivity and growth potential, accompanied by altered morphology and mechanical properties as well as reduced integrin-α7 expression. Aging-associated impaired muscle regenerative capacity and muscle wasting is likely due to aging-induced intrinsic MuSC alterations and dysfunctional mechanosensitivity.


Asunto(s)
Proliferación Celular/fisiología , Senescencia Celular/fisiología , Mecanotransducción Celular/fisiología , Fibras Musculares Esqueléticas/fisiología , Células Madre/fisiología , Envejecimiento , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Adhesión Celular/fisiología , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Ratones , Óxido Nítrico/metabolismo , Resistencia al Corte
10.
J Mech Behav Biomed Mater ; 123: 104730, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34438250

RESUMEN

Osteocytes are capable of remodeling their perilacunar bone matrix, which causes considerable variations in the shape and size of their lacunae. If these variations in lacunar morphology cause changes in the mechanical environment of the osteocytes, in particular local strains, they would subsequently affect bone mechanotransduction, since osteocytes are likely able to directly sense these strains. The purpose of this study is to quantify the effect of alterations in osteocyte lacunar morphology on peri-lacunar bone tissue strains. To this end, we related the actual lacunar shape in fibulae of six young-adult (5-month) and six old (23-month) mice, quantified by high-resolution micro-computed tomography, to microscopic strains, analyzed by micro-finite element modeling. We showed that peak effective strain increased by 12.6% in osteocyte cell bodies (OCYs), 9.6% in pericellular matrix (PCM), and 5.3% in extra cellular matrix (ECM) as the lacunae volume increased from 100-200 µm3 to 500-600 µm3. Lacunae with a larger deviation (>8°) in orientation from the longitudinal axis of the bone are exposed to 8% higher strains in OCYs, 6.5% in PCM, 4.2% in ECM than lacunae with a deviation in orientation below 8°. Moreover, increased lacuna sphericity from 0 to 0.5 to 0.7-1 led to 25%, 23%, and 13% decrease in maximum effective strains in OCYs, PCM, and ECM, respectively. We further showed that due to the presence of smaller and more round lacunae in old mice, local bone tissue strains are on average 5% lower in the vicinity of lacunae and their osteocytes of old mice compared to young. Understanding how changes in lacunar morphology affect the micromechanical environment of osteocytes presents a first step in unraveling their potential role in impaired bone mechanoresponsiveness with e.g. aging.


Asunto(s)
Mecanotransducción Celular , Osteocitos , Animales , Matriz Ósea , Huesos , Ratones , Microtomografía por Rayos X
11.
Physiol Rep ; 9(12): e14917, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34174021

RESUMEN

Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.


Asunto(s)
Diferenciación Celular/fisiología , Osteoblastos/fisiología , Flujo Pulsátil/fisiología , Actinas/metabolismo , Actinas/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Línea Celular , Colágeno/metabolismo , Análisis de Elementos Finitos , Expresión Génica , Ratones , Óxido Nítrico/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología
12.
Biophys J ; 120(13): 2665-2678, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34087215

RESUMEN

Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.


Asunto(s)
Músculo Esquelético , Mioblastos , Animales , Diferenciación Celular , Expresión Génica , Ratones , Estrés Mecánico
13.
Biofouling ; 37(2): 184-193, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33615928

RESUMEN

In this in vitro study the effect of XZ.700, a new endolysin, on methicillin resistant Staphylococcus aureus (MRSA) biofilms grown on titanium was evaluated. Biofilms of S. aureus USA300 were grown statically and under flow, and treatment with XZ.700 was compared with povidone-iodine (PVP-I) and gentamicin. To evaluate the cytotoxic effects of XZ.700 and derived biofilm lysates, human osteocyte-like cells were exposed to biofilm supernatants, and metabolism and proliferation were quantified. XZ.700 showed a significant, concentration dependent reduction in biofilm viability, compared with carrier controls. Metabolism and proliferation of human osteocyte-like cells were not affected by XZ.700 or lysates, unlike PVP-I and gentamicin lysates which significantly inhibited proliferation. Using time-lapse microscopy, rapid biofilm killing and removal was observed for XZ.700. In comparison, PVP-I and gentamicin showed slower biofilm killing, with no apparent biofilm removal. In conclusion, XZ.700 reduced MRSA biofilms, especially under flow condition, without toxicity for surrounding bone cells.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/toxicidad , Biopelículas , Endopeptidasas , Humanos , Osteocitos , Staphylococcus aureus
14.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171812

RESUMEN

Mechanical loading preserves bone mass and function-yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.


Asunto(s)
Núcleo Celular/fisiología , Mecanotransducción Celular/fisiología , Osteoblastos/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Ratones , Osteoblastos/fisiología , Osteocitos/metabolismo , ARN Mensajero/genética , Resistencia al Corte/fisiología , Transducción de Señal/fisiología , Estrés Mecánico
15.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709153

RESUMEN

Osteoblasts derived from mouse skulls have increased osteoclastogenic potential compared to long bone osteoblasts when stimulated with 1,25(OH)2 vitamin D3 (vitD3). This indicates that bone cells from specific sites can react differently to biochemical signals, e.g., during inflammation or as emitted by bioactive bone tissue-engineering constructs. Given the high turn-over of alveolar bone, we hypothesized that human alveolar bone-derived osteoblasts have an increased osteogenic and osteoclastogenic potential compared to the osteoblasts derived from long bone. The osteogenic and osteoclastogenic capacity of alveolar bone cells and long bone cells were assessed in the presence and absence of osteotropic agent vitD3. Both cell types were studied in osteogenesis experiments, using an osteogenic medium, and in osteoclastogenesis experiments by co-culturing osteoblasts with peripheral blood mononuclear cells (PBMCs). Both osteogenic and osteoclastic markers were measured. At day 0, long bones seem to have a more late-osteoblastic/preosteocyte-like phenotype compared to the alveolar bone cells as shown by slower proliferation, the higher expression of the matrix molecule Osteopontin (OPN) and the osteocyte-enriched cytoskeletal component Actin alpha 1 (ACTA1). This phenotype was maintained during the osteogenesis assays, where long bone-derived cells still expressed more OPN and ACTA1. Under co-culture conditions with PBMCs, long bone cells also had a higher Tumor necrose factor-alfa (TNF-α) expression and induced the formation of osteoclasts more than alveolar bone cells. Correspondingly, the expression of osteoclast genes dendritic cell specific transmembrane protein (DC-STAMP) and Receptor activator of nuclear factor kappa-Β ligand (RankL) was higher in long bone co-cultures. Together, our results indicate that long bone-derived osteoblasts are more active in bone-remodeling processes, especially in osteoclastogenesis, than alveolar bone-derived cells. This indicates that tissue-engineering solutions need to be specifically designed for the site of application, such as defects in long bones vs. the regeneration of alveolar bone after severe periodontitis.


Asunto(s)
Proceso Alveolar/citología , Osteogénesis , Tibia/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Osteoblastos/citología , Osteoclastos/citología
16.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366057

RESUMEN

Incorporation of 1,25(OH)2 vitamin D3 (vitD3) into tissue-engineered scaffolds could aid the healing of critical-sized bone defects. We hypothesize that shorter applications of vitD3 lead to more osteogenic differentiation of mesenchymal stem cells (MSCs) than a sustained application. To test this, release from a scaffold was mimicked by exposing MSCs to exactly controlled vitD3 regimens. Human adipose stem cells (hASCs) were seeded onto calcium phosphate particles, cultured for 20 days, and treated with 124 ng vitD3, either provided during 30 min before seeding ([200 nM]), during the first two days ([100 nM]), or during 20 days ([10 nM]). Alternatively, hASCs were treated for two days with 6.2 ng vitD3 ([10 nM]). hASCs attached to the calcium phosphate particles and were viable (~75%). Cell number was not affected by the various vitD3 applications. VitD3 (124 ng) applied over 20 days increased cellular alkaline phosphatase activity at Days 7 and 20, reduced expression of the early osteogenic marker RUNX2 at Day 20, and strongly upregulated expression of the vitD3 inactivating enzyme CYP24. VitD3 (124 ng) also reduced RUNX2 and increased CYP24 applied at [100 nM] for two days, but not at [200 nM] for 30 min. These results show that 20-day application of vitD3 has more effect on hASCs than the same total amount applied in a shorter time span.


Asunto(s)
Tejido Adiposo/citología , Colecalciferol/farmacología , Células Madre/citología , Células Madre/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Osteogénesis/efectos de los fármacos
17.
FASEB J ; 34(3): 3755-3772, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31957079

RESUMEN

To date, it is unclear how fluid dynamics stimulate mechanosensory cells to induce an osteoprotective or osteodestructive response. We investigated how murine hematopoietic progenitor cells respond to 2 minutes of dynamic fluid flow stimulation with a precisely controlled sequence of fluid shear stresses. The response was quantified by measuring extracellular adenosine triphosphate (ATP), immunocytochemistry of Piezo1, and sarcoplasmic/endoplasmic Ca2+ reticulum ATPase 2 (SERCA2), and by the ability of soluble factors produced by mechanically stimulated cells to modulate osteoclast differentiation. We rejected our initial hypothesis that peak wall shear stress rate determines the response of hematopoietic progenitor cells to dynamic fluid shear stress, as it had only a minor correlation with the abovementioned parameters. Low stimulus amplitudes corresponded to activation of Piezo1, SERCA2, low concentrations of extracellular ATP, and inhibition of osteoclastogenesis and resorption area, while high amplitudes generally corresponded to osteodestructive responses. At a given amplitude (3 Pa) and waveform (square), the duration of individual stimuli (duty cycle) showed a strong correlation with the release of ATP and osteoclast number and resorption area. Collectively, our data suggest that hematopoietic progenitor cells respond in a viscoelastic manner to loading, since a combination of high shear stress amplitude and prolonged duty cycle is needed to trigger an osteodestructive response. PLAIN LANGUAGE SUMMARY: In case of painful joints or missing teeth, the current intervention is to replace them with an implant to keep a high-quality lifestyle. When exercising or chewing, the cells in the bone around the implant experience mechanical loading. This loading generally supports bone formation to strengthen the bone and prevent breaking, but can also stimulate bone loss when the mechanical loading becomes too high around orthopedic and dental implants. We still do not fully understand how cells in the bone can distinguish between mechanical loading that strengthens or weakens the bone. We cultured cells derived from the bone marrow in the laboratory to test whether the bone loss response depends on (i) how fast a mechanical load is applied (rate), (ii) how intense the mechanical load is (amplitude), or (iii) how long each individual loading stimulus is applied (duration). We mimicked mechanical loading as it occurs in the body, by applying very precisely controlled flow of fluid over the cells. We found that a mechanosensitive receptor Piezo1 was activated by a low amplitude stimulus, which usually strengthens the bone. The potential inhibitor of Piezo1, namely SERCA2, was only activated by a low amplitude stimulus. This happened regardless of the rate of application. At a constant high amplitude, a longer duration of the stimulus enhanced the bone-weakening response. Based on these results we deduce that a high loading amplitude tends to be bone weakening, and the longer this high amplitude persists, the worse it is for the bone.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Canales Iónicos/genética , Canales Iónicos/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Masculino , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Resistencia al Corte/fisiología
18.
J Biomed Mater Res A ; 108(4): 923-937, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31895490

RESUMEN

Biomaterial integration into bone requires optimal surface conditions to promote osteoprogenitor behavior, which is affected by integrin-binding via arginine-glycine-aspartate (RGD). RGD-functionalized supported lipid bilayers (SLBs) might be interesting as biomaterial coating in bone regeneration, because they allow integration of proteins, for example, growth factors, cytokines, and/or antibacterial agents. Since it is unknown whether and how they affect osteoprogenitor adhesion and differentiation, the aim was to investigate adhesion, focal adhesion formation, morphology, proliferation, and osteogenic potential of pre-osteoblasts cultured on RGD-functionalized SLBs compared to unfunctionalized SLBs and poly-l-lysine (PLL). After 17 hr, pre-osteoblast density on SLBs without or with RGD was similar, but lower than on PLL. Cell surface area, elongation, and number and size of phospho-paxillin clusters were also similar. Cells on SLBs without or with RGD were smaller, more elongated, and had less and smaller phospho-paxillin clusters than on PLL. OPN expression was increased on SLBs with RGD compared to PLL. Moreover, after 1 week, COL1a1 expression was increased on SLBs without or with RGD. In conclusion, pre-osteoblast adhesion and enhanced differentiation were realized for the first time on RGD-functionalized SLBs, pointing to a new horizon in the management of bone regeneration using biomaterials. Together with SLBs nonfouling nature and the possibility of adjusting SLB fluidity and peptide content make SLBs highly promising as substrate to develop innovative biomimetic coatings for biomaterials in bone regeneration.


Asunto(s)
Diferenciación Celular , Membrana Dobles de Lípidos/metabolismo , Oligopéptidos/farmacología , Osteoblastos/citología , Osteogénesis , Animales , Adhesión Celular/efectos de los fármacos , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Forma de la Célula/efectos de los fármacos , Forma de la Célula/genética , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética
19.
J Biomed Mater Res B Appl Biomater ; 108(4): 1536-1545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31648414

RESUMEN

Custom-made polymethyl methacrylate (PMMA) bone cement is used to treat cranial bone defects but whether it is cytotoxic is still unsure. Possible PMMA-induced adverse effects in vivo affect mesenchymal stem cells and osteoblasts at the implant site. We aimed to investigate whether PMMA affects osteogenic and osteoclast activation potential of human mesenchymal stem cells and/or osteoblasts. Immediately after polymerization, PMMA was added to cultured human adipose stem cells (hASCs) or human osteoblasts (hOBs). Medium lactate dehydrogenase was measured (day 1), metabolic activity, proliferation, osteogenic and osteoclast-activation marker expression (day 1 and 7), and mineralization (day 14). PMMA did not affect lactate dehydrogenase, KI67 gene expression, or metabolic activity in hASCs and hOBs. PMMA transiently decreased DNA content in hOBs only. PMMA increased COL1 gene expression in hASCs, but decreased RUNX2 in hOBs. PMMA did not affect osteocalcin or alkaline phosphatase (ALP) expression, ALP activity, or mineralization. Only in hOBs, PMMA decreased RANKL/OPG ratio. In conclusion, PMMA is not cytotoxic and does not adversely affect the osteogenic potential of hASCs or hOBs. Moreover, PMMA does not enhance production of osteoclast factors by hASCs and hOBs in vitro. Therefore, PMMA bone cement seems highly suitable to treat patients with cranial bone defects.


Asunto(s)
Tejido Adiposo/metabolismo , Cementos para Huesos/farmacología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Polimetil Metacrilato/farmacología , Adulto , Femenino , Humanos , Persona de Mediana Edad
20.
Curr Osteoporos Rep ; 17(5): 235-249, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31428977

RESUMEN

PURPOSE OF REVIEW: Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS: The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.


Asunto(s)
Mecanotransducción Celular/fisiología , Células Musculares/fisiología , Osteocitos/fisiología , Animales , Diferenciación Celular , Matriz Extracelular , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...