Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Vet Entomol ; 34(1): 17-26, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31420992

RESUMEN

Vector-borne diseases often originate from wildlife and can spill over into the human population. One of the most important determinants of vector-borne disease transmission is the host preference of mosquitoes. Mosquitoes with a specialised host preference are guided by body odours to find their hosts in addition to carbon dioxide. Little is known about the role of mosquito host preference in the spillover of pathogenic agents from humans towards animals and vice versa. In the Republic of Congo, the attraction of mosquitoes to primate host odours was determined, as well as their possible role as malaria vectors, using odour-baited traps mimicking the potential hosts of mosquitoes. Most of the mosquito species caught showed a generalistic host preference. Anopheles obscurus was the most abundant Anopheles mosquito, with a generalistic host preference observed from the olfactory response and the detection of various Plasmodium parasites. Interestingly, Culex decens showed a much higher attraction towards chimpanzee odours than to human or cow odours. Human Plasmodium parasites were observed in both human and chimpanzee blood, although not in the Anopheles mosquitoes that were collected. Understanding the role of mosquito host preference for cross-species parasite transmission provides information that will help to determine the risk of spillover of vector-borne diseases.


Asunto(s)
Anopheles/fisiología , Quimiotaxis , Culex/fisiología , Odorantes , Pan troglodytes , Plasmodium/aislamiento & purificación , Zoonosis/transmisión , Animales , Anopheles/parasitología , Congo , Culex/parasitología , Conducta Alimentaria , Malaria/transmisión , Malaria/veterinaria , Masculino , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología
2.
Rev Sci Instrum ; 85(8): 083703, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25173272

RESUMEN

To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

3.
Appl Opt ; 45(30): 7795-9, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17068512

RESUMEN

The ellipsometric measurement of thickness is demonstrated using a computer screen as a light source and a webcam as a detector, adding imaging off-null ellipsometry to the range of available computer screen photoassisted techniques. The results show good qualitative agreement with a simplified theoretical model and a thickness resolution in the nanometer range is achieved. The presented model can be used to optimize the setup for sensitivity. Since the computer screen serves as a homogeneous large area illumination source, which can be tuned to different intensities for different parts of the sample, a large sensitivity range can be obtained without sacrificing thickness resolution.

4.
Phys Chem Chem Phys ; 7(13): 2629-34, 2005 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16189574

RESUMEN

High energy resolution fast XPS combined with TPD experiments were used to study the effect of chemisorbed oxygen on the adsorption and dissociation of NH(3) on Ir(110). Below 250 K the presence of O(ad) does not influence NH(3) decomposition. Above 250 K O(ad) enhances NH(3) dissociation, which results in three times as much N(2) formation and less molecular NH(3) desorption compared to the experiments without O(ad). The effect of O(ad) can be attributed to destabilization of NH(ad) on the surface, resulting in a further dehydrogenation towards N(ad). The presence of O(ad) on the surface lowers the temperature at which the N(ad) combination reaction takes place by as much as 200 K, due to repulsive interaction between N(ad) and O(ad). NO is formed above 450 K if both N(ad) and O(ad) are present on the surface.


Asunto(s)
Amoníaco/química , Iridio/química , Oxígeno/química , Adsorción , Análisis Diferencial Térmico/métodos , Óxido Nítrico/síntesis química , Espectrometría por Rayos X/métodos , Propiedades de Superficie , Temperatura
5.
J Chem Phys ; 122(18): 184705, 2005 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-15918745

RESUMEN

The adsorption and decomposition of NH3 on Ir(110) has been studied in the temperature range from 80 K to 700 K. By using high-energy resolution x-ray photoelectron spectroscopy it is possible to distinguish chemically different surface species. At low temperature a NH3 multilayer, which desorbs at approximately 110 K, was observed. The second layer of NH3 molecules desorbs around 140 K, in a separate desorption peak. Chemisorbed NH3 desorbs in steps from the surface and several desorption peaks are observed between 200 and 400 K. A part of the NH3ad decomposes into NH(ad) between 225 and 300 K. NH(ad) decomposes into N(ad) between 400 K and 500 K and the hydrogen released in this process immediately desorbs. N2 desorption takes place between 500 and 700 K via N(ad) combination. The steady state decomposition reaction of NH3 starts at 500 K. The maximum reaction rate is observed between 540 K and 610 K. A model is presented to explain the occurrence of a maximum in the reaction rate. Hydrogenation of N(ad) below 400 K results in NH(ad). No NH2ad or NH3ad/NH3 were observed. The hydrogenation of NH(ad) only takes place above 400 K. On the basis of the experimental findings an energy scheme is presented to account for the observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...