Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 829121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310670

RESUMEN

Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins-which are expressed from dawn to dusk-interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.

2.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917959

RESUMEN

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Helicasas/metabolismo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Raíces de Plantas/fisiología , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
3.
Mech Dev ; 164: 103651, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127453

RESUMEN

Ambystoma mexicanum (axolotl) has been one of the major experimental models for the study of regeneration during the past 100 years. Axolotl limb regeneration takes place through a multi-stage and complex developmental process called epimorphosis that involves diverse events of cell reprogramming. Such events start with dedifferentiation of somatic cells and the proliferation of quiescent stem cells to generate a population of proliferative cells called blastema. Once the blastema reaches a mature stage, cells undergo progressive differentiation into the diverse cell lineages that will form the new limb. Such pivotal cell reprogramming phenomena depend on the fine-tuned regulation of the cell cycle in each regeneration stage, where cell populations display specific proliferative capacities and differentiation status. The axolotl genome has been fully sequenced and released recently, and diverse RNA-seq approaches have also been generated, enabling the identification and conservatory analysis of core cell cycle regulators in this species. We report here our results from such analyses and present the transcriptional behavior of key regulatory factors during axolotl limb regeneration. We also found conserved protein interactions between axolotl Cyclin Dependent Kinases 2, 4 and 6 and Cyclins type D and E. Canonical CYC-CDK interactions that play major roles in modulating cell cycle progression in eukaryotes.


Asunto(s)
Ambystoma mexicanum/crecimiento & desarrollo , Ciclo Celular , Extremidades/crecimiento & desarrollo , Regeneración , Animales , Diferenciación Celular , Linaje de la Célula , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , RNA-Seq
4.
J Exp Bot ; 71(18): 5484-5494, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32479638

RESUMEN

PIRIN2 (PRN2) was earlier reported to suppress syringyl (S)-type lignin accumulation of xylem vessels of Arabidopsis thaliana. In the present study, we report yeast two-hybrid results supporting the interaction of PRN2 with HISTONE MONOUBIQUITINATION2 (HUB2) in Arabidopsis. HUB2 has been previously implicated in several plant developmental processes, but not in lignification. Interaction between PRN2 and HUB2 was verified by ß-galactosidase enzymatic and co-immunoprecipitation assays. HUB2 promoted the deposition of S-type lignin in the secondary cell walls of both stem and hypocotyl tissues, as analysed by pyrolysis-GC/MS. Chemical fingerprinting of individual xylem vessel cell walls by Raman and Fourier transform infrared microspectroscopy supported the function of HUB2 in lignin deposition. These results, together with a genetic analysis of the hub2 prn2 double mutant, support the antagonistic function of PRN2 and HUB2 in deposition of S-type lignin. Transcriptome analyses indicated the opposite regulation of the S-type lignin biosynthetic gene FERULATE-5-HYDROXYLASE1 by PRN2 and HUB2 as the underlying mechanism. PRN2 and HUB2 promoter activities co-localized in cells neighbouring the xylem vessel elements, suggesting that the S-type lignin-promoting function of HUB2 is antagonized by PRN2 for the benefit of the guaiacyl (G)-type lignin enrichment of the neighbouring xylem vessel elements.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Cromatina , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Ubiquitina-Proteína Ligasas , Xilema/genética , Xilema/metabolismo
5.
Mol Plant ; 12(11): 1499-1514, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31520787

RESUMEN

In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Estabilidad Proteica
6.
New Phytol ; 220(2): 579-592, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29995985

RESUMEN

The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced in vitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cullin/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Cullin/genética , Genes de Plantas , Humanos , Mutación/genética , Fenotipo , Células Vegetales/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Ubiquitinación
7.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29291975

RESUMEN

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Asunto(s)
Ambystoma mexicanum/genética , Regulación de la Expresión Génica , ARN Mensajero/genética , Regeneración/genética , Transcripción Genética , Transcriptoma , Ambystoma mexicanum/fisiología , Animales , Femenino , Biblioteca de Genes , Ontología de Genes , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , Especificidad de Órganos , Análisis de Componente Principal , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Especificidad de la Especie
8.
Elife ; 62017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28826468

RESUMEN

Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the BLADE-ON-PETIOLE (BOP) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that BOP2 promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing PIF4 activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the bop2 mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3BOP1/BOP2 E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cullin , Luz , Desarrollo de la Planta/efectos de la radiación , Unión Proteica , Temperatura , Ubiquitinación
9.
New Phytol ; 216(1): 76-89, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28742236

RESUMEN

The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Xilema/citología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis , Fenotipo , Fosforilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Transactivadores/metabolismo
10.
Stem Cells Dev ; 25(14): 1035-49, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27224014

RESUMEN

Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.


Asunto(s)
Reprogramación Celular/genética , MicroARNs/metabolismo , Animales , Diferenciación Celular/genética , Plasticidad de la Célula/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/patología
11.
Plant J ; 76(5): 811-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112720

RESUMEN

In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub-family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing 'half transporters' are semi-dominant and result in vascular patterning defects in cotyledons and the floral stem. Co-immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Floema/crecimiento & desarrollo , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Homeostasis , Metaboloma , Mutación , Floema/genética , Fitosteroles/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Multimerización de Proteína
12.
PLoS One ; 7(12): e51973, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251667

RESUMEN

BACKGROUND: A tool for stoichiometric co-expression of effector and target proteins to study intracellular protein trafficking processes has been provided by the so called 2A peptide technology. In this system, the 16-20 amino acid 2A peptide from RNA viruses allows synthesis of multiple gene products from single transcripts. However, so far the use of the 2A technology in plant systems has been limited. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to assess the suitability of the 2A peptide technology to study the effects exerted by dominant mutant forms of three small GTPase proteins, RABD2a, SAR1, and ARF1 on intracellular protein trafficking in plant cells. Special emphasis was given to CAH1 protein from Arabidopsis, which is trafficking to the chloroplast via a poorly characterized endoplasmic reticulum-to-Golgi pathway. Dominant negative mutants for these GTPases were co-expressed with fluorescent marker proteins as polyproteins separated by a 20 residue self-cleaving 2A peptide. Cleavage efficiency analysis of the generated polyproteins showed that functionality of the 2A peptide was influenced by several factors. This enabled us to design constructs with greatly increased cleavage efficiency compared to previous studies. The dominant negative GTPase variants resulting from cleavage of these 2A peptide constructs were found to be stable and active, and were successfully used to study the inhibitory effect on trafficking of the N-glycosylated CAH1 protein through the endomembrane system. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the 2A peptide is a suitable tool when studying plant intracellular protein trafficking and that transient protoplast and in planta expression of mutant forms of SAR1 and RABD2a disrupts CAH1 trafficking. Similarly, expression of dominant ARF1 mutants also caused inhibition of CAH1 trafficking to a different extent. These results indicate that early trafficking of the plastid glycoprotein CAH1 depends on canonical vesicular transport mechanisms operating between the endoplasmic reticulum and Golgi apparatus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de Unión al GTP Monoméricas/biosíntesis , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , Plastidios/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Transporte de Proteínas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
13.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22921914

RESUMEN

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Raíces de Plantas/citología , Secuencia de Aminoácidos , División Celular Asimétrica , Ciclina D/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ácidos Indolacéticos/metabolismo , Células del Mesófilo/metabolismo , Datos de Secuencia Molecular , Fosforilación , Raíces de Plantas/metabolismo , Alineación de Secuencia
14.
Plant Cell ; 24(7): 3009-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22786870

RESUMEN

Exposure of plants to light intensities that exceed the electron utilization capacity of the chloroplast has a dramatic impact on nuclear gene expression. The photoreceptor Cryptochrome 1 (cry1) is essential to the induction of genes encoding photoprotective components in Arabidopsis thaliana. Bioinformatic analysis of the cry1 regulon revealed the putative cis-element CryR1 (GnTCKAG), and here we demonstrate an interaction between CryR1 and the zinc finger GATA-type transcription factors ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 (ZML1) and ZML2. The ZML proteins specifically bind to the CryR1 cis-element as demonstrated in vitro and in vivo, and TCTAG was shown to constitute the core sequence required for ZML2 binding. In addition, ZML2 activated transcription of the yellow fluorescent protein reporter gene driven by the CryR1 cis-element in Arabidopsis leaf protoplasts. T-DNA insertion lines for ZML2 and its homolog ZML1 demonstrated misregulation of several cry1-dependent genes in response to excess light. Furthermore, the zml1 and zml2 T-DNA insertion lines displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II (PSII), indicated by reduced maximum quantum efficiency of PSII, and severe photobleaching. Thus, we identified the ZML2 and ZML1 GATA transcription factors as two essential components of the cry1-mediated photoprotective response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Inflorescencia/fisiología , Inflorescencia/efectos de la radiación , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Meristema/efectos de la radiación , Modelos Moleculares , Mutagénesis Insercional , Fenotipo , Complejo de Proteína del Fotosistema II/fisiología , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión , Regulón/genética , Elementos de Respuesta/genética , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Plantones/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
15.
EMBO J ; 31(6): 1480-93, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22307083

RESUMEN

Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Cromatina/genética , Cromatina/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Sacarosa/metabolismo
16.
PLoS Genet ; 7(11): e1002361, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072988

RESUMEN

Day length is a key environmental cue regulating the timing of major developmental transitions in plants. For example, in perennial plants such as the long-lived trees of the boreal forest, exposure to short days (SD) leads to the termination of meristem activity and bud set (referred to as growth cessation). The mechanism underlying SD-mediated induction of growth cessation is poorly understood. Here we show that the AIL1-AIL4 (AINTEGUMENTALIKE) transcription factors of the AP2 family are the downstream targets of the SD signal in the regulation of growth cessation response in hybrid aspen trees. AIL1 is expressed in the shoot apical meristem and leaf primordia, and exposure to SD signal downregulates AIL1 expression. Downregulation of AIL gene expression by SDs is altered in transgenic hybrid aspen plants that are defective in SD perception and/or response, e.g. PHYA or FT overexpressors. Importantly, SD-mediated regulation of growth cessation response is also affected by overexpression or downregulation of AIL gene expression. AIL1 protein can interact with the promoter of the key cell cycle genes, e.g. CYCD3.2, and downregulation of the expression of D-type cyclins after SD treatment is prevented by AIL1 overexpression. These data reveal that execution of SD-mediated growth cessation response requires the downregulation of AIL gene expression. Thus, while early acting components like PHYA and the CO/FT regulon are conserved in day-length regulation of flowering time and growth cessation between annual and perennial plants, signaling pathways downstream of SD perception diverge, with AIL transcription factors being novel targets of the CO/FT regulon connecting the perception of SD signal to the regulation of meristem activity.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus/crecimiento & desarrollo , Populus/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Ciclo Celular , Quimera/genética , Quimera/crecimiento & desarrollo , Regulación hacia Abajo , Flores/genética , Flores/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Fotoperiodo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/genética
17.
PLoS One ; 6(6): e21021, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695217

RESUMEN

BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Anhidrasas Carbónicas/metabolismo , Cloroplastos/enzimología , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , Cloroplastos/metabolismo , Disulfuros/química , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Glicosilación , Modelos Moleculares , Datos de Secuencia Molecular , Polisacáridos/metabolismo , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas
18.
Proc Natl Acad Sci U S A ; 108(8): 3418-23, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21289280

RESUMEN

The molecular basis of short-day-induced growth cessation and dormancy in the meristems of perennial plants (e.g., forest trees growing in temperate and high-latitude regions) is poorly understood. Using global transcript profiling, we show distinct stage-specific alterations in auxin responsiveness of the transcriptome in the stem tissues during short-day-induced growth cessation and both the transition to and establishment of dormancy in the cambial meristem of hybrid aspen trees. This stage-specific modulation of auxin signaling appears to be controlled via distinct mechanisms. Whereas the induction of growth cessation in the cambium could involve induction of repressor auxin response factors (ARFs) and down-regulation of activator ARFs, dormancy is associated with perturbation of the activity of the SKP-Cullin-F-box(TIR) (SCF(TIR)) complex, leading to potential stabilization of repressor auxin (AUX)/indole-3-acetic acid (IAA) proteins. Although the role of hormones, such as abscisic acid (ABA) and gibberellic acid (GA), in growth cessation and dormancy is well established, our data now implicate auxin in this process. Importantly, in contrast to most developmental processes in which regulation by auxin involves changes in cellular auxin contents, day-length-regulated induction of cambial growth cessation and dormancy involves changes in auxin responses rather than auxin content.


Asunto(s)
Cámbium/crecimiento & desarrollo , Ácidos Indolacéticos , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Árboles/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
19.
Plant Physiol ; 155(4): 2108-22, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21300918

RESUMEN

The circadian clock of the model plant Arabidopsis (Arabidopsis thaliana) is made up of a complex series of interacting feedback loops whereby proteins regulate their own expression across day and night. early bird (ebi) is a circadian mutation that causes the clock to speed up: ebi plants have short circadian periods, early phase of clock gene expression, and are early flowering. We show that EBI associates with ZEITLUPE (ZTL), known to act in the plant clock as a posttranslational mediator of protein degradation. However, EBI is not degraded by its interaction with ZTL. Instead, ZTL counteracts the effect of EBI during the day and increases it at night, modulating the expression of key circadian components. The partnership of EBI with ZTL reveals a novel mechanism involved in controlling the complex transcription-translation feedback loops of the clock. This work highlights the importance of cross talk between the ubiquitination pathway and transcriptional control for regulation of the plant clock.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , ARN de Planta/genética , Factores de Transcripción/genética
20.
J Exp Bot ; 62(6): 2155-68, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21196474

RESUMEN

Plant retinoblastoma-related (RBR) proteins are primarily considered as key regulators of G(1)/S phase transition, with functional roles in a variety of cellular events during plant growth and organ development. Polyclonal antibody against the C-terminal region of the Arabidopsis RBR1 protein also specifically recognizes the alfalfa 115 kDa MsRBR protein, as shown by the antigen competition assay. The MsRBR protein was detected in all cell cycle phases, with a moderate increase in samples representing G(2)/M cells. Antibody against the human phospho-pRb peptide (Ser807/811) cross-reacted with the same 115 kDa MsRBR protein and with the in vitro phosphorylated MsRBR protein C-terminal fragment. Phospho-MsRBR protein was low in G(1) cells. Its amount increased upon entry into the S phase and remained high during the G(2)/M phases. Roscovitine treatment abolished the activity of alfalfa MsCDKA1;1 and MsCDKB2;1, and the phospho-MsRBR protein level was significantly decreased in the treated cells. Colchicine block increased the detected levels of both forms of MsRBR protein. Reduced levels of the MsRBR protein in cells at stationary phase or grown in hormone-free medium can be a sign of the division-dependent presence of plant RBR proteins. Immunolocalization of the phospho-MsRBR protein indicated spots of variable number and size in the labelled interphase nuclei and high signal intensity of nuclear granules in prophase. Structures similar to phospho-MsRBR proteins cannot be recognized in later mitotic phases. Based on the presented western blot and immunolocalization data, the possible involvement of RBR proteins in G(2)/M phase regulation in plant cells is discussed.


Asunto(s)
Interfase , Medicago sativa/metabolismo , Mitosis , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Células Cultivadas , Colchicina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Inmunohistoquímica , Fosforilación , Purinas , Roscovitina , Moduladores de Tubulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...