Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(4): 2111-2127, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166831

RESUMEN

Transposable elements are an abundant source of transcription factor binding sites, and favorable genomic integration may lead to their recruitment by the host genome for gene regulatory functions. However, it is unclear how frequent co-option of transposable elements as regulatory elements is, to which regulatory programs they contribute and how they compare to regulatory elements devoid of transposable elements. Here, we report a transcription initiation-centric, in-depth characterization of the transposon-derived regulatory landscape of mouse embryonic stem cells. We demonstrate that a substantial number of transposable element insertions, in particular endogenous retroviral elements, are associated with open chromatin regions that are divergently transcribed into unstable RNAs in a cell-type specific manner, and that these elements contribute to a sizable proportion of active enhancers and gene promoters. We further show that transposon subfamilies contribute differently and distinctly to the pluripotency regulatory program through their repertoires of transcription factor binding site sequences, shedding light on the formation of regulatory programs and the origins of regulatory elements.


Asunto(s)
Retrovirus Endógenos , Animales , Elementos Transponibles de ADN/genética , Células Madre Embrionarias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 46(11): 5455-5469, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29659982

RESUMEN

Mammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in Drosophila melanogaster. We find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The seemingly separable layer of regulation by gene promoters with housekeeping enhancer potential is also indicated by chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.


Asunto(s)
Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética , Animales , Línea Celular , Código de Histonas/fisiología , ARN/metabolismo , Estabilidad del ARN/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA